
MAC TR-87

A MODEL FOR PROCESS REPRESENTATION AND SYNTI-IESIS

Robert: I-I. Thomas

(N&S~~CB~122379b ~ NODEL FOR PROCESS .
REPRESENTATION iND SINTHESIS PhoBo ,Thes1s
RoBo Thomas (Hal.Ssach\llset.ts Xlrnsto of Teclnlob
Juno ~971 268 P CSCL oga

June 1971

G3/08

1--- --
I tteproduc~d-b~

n~n~olI0NAi!.. iJTiECHNnCAl I
' UU'\Jtf- RMAYeON Sff~VICf.

U S Deparfm"nf of Comm~r •
- Sp~n!lfield\lA 22151" COl

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS 02139

A MODEL FOR PROCESS REPRESENTATION AND SYNTHESIS

Robert H. Thomas

June 1971

PROJECT MAC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge Massachusetts 02139

2

ACKNOWLEDGE~mNTS

I \'Tish to thank my advisor, Professor Arthur Evans

Jr., for his guidance and for his interest in me. He

has contributed significantly to the successful

completion of this dissertation. I am indebted to Dr.

Daniel G. Bobrow of Bolt Beranek and newman Inc. for

his enthusiasm for and contributions to the research.

I thank Professor ttichael J. Fischer for his

suggestions and criticisms which have influenced both

the course of the work and its presentation.

For his encouragement and interest in the research

I express my gratitude to Dr. William R. Sutherlann of

Bolt Beranek and Newman Inc.

Finally I thank my wife Elaine for being Elaine.

Work reported herein was supported in part by

Project l1AC, an M.I.T. research project

sponsored by the Advanced Research Projects Agency,

Department of Defense, under the Office of Naval

Research Contract Nonr-4102(Ol); and, in part by

the National Aeronautics and Space Administration

grant NGR-22-009-393.

3

A MODEL FOR PROCESS REPRESENTATION AND SYNTHESIS*

Abstract

This dissertation investigates the problem of representing
groups of loosely connected processes and develops a model for
process representation useful for synthesizing complex patterns
of process behavior. There are three parts to the dissertation.
The first part isolates the concepts which form the basis for
the process representation model by focusing on questions such
as: What is a process; What is an event; Should one process
be able to restrict the capabilities of another? The second
part develops a model for process representation which captures
the concepts and intuitions developed in the first part. The
model presented is able to describe both the internal structure
of individual processes and the "interface" structure between
interacting processes. Much of the model's descriptive power
derives from its use of the notion of process state as a vehicle
for relating the internal and external aspects of process be
havior. The third part demonstrates by example that the model
for process representation is a useful one for synthesizing
process behavior patterns. In it the model is used to define
a variety of interesting process behavior patterns. The dis
sertation closes by suggesting how the model could be used as
a semantic base for a very potent language extension facility.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the re
quirements for the degree of Doctor of Philosophy, May 1971.

4

TABLE OF CONTENTS

1. A Model For Process Synthesis

1. Introduction

2. Related Work

1. Language Definition Work

2. Theoretical Work

3. Linguistic Work

4. Operating System Work

5. Other Work

3. Plan For the Dissertation

2. Motivation For the Model

1. Introduction

2. The Process Notion

3. The Role of Memory

4. Controlled Interactions

5. Events

6. Changing Numbers of Processes

7. Internal Aspects of Process Behavior

8. The Process State as a Data Object

9. Other Issues

1. On the Independence of Processes

2. The World External to the Model

3. On the Traditional Problems Arising

From Concurrency

4. How the Notion of an Executive Fits In

10. Toward a Particular Model

7

7

10

11

16

18

21

23

24

26

26

26

30

32

34

37

39

43

44

44

46

47

49

50

5

3. The Model in Overview

1. Introduction

2. Organization of Process States

3. The State Transition Rule

4. External Aspects

5. Internal Aspects

6. Manipulating the Process 'State

4. The Model in Detail

1. Introduction

2. Virtual Memory

3. The Universe of Discourse

4. Structures

52

52

52

57

63

69

77

81

81

83

90

93

I

~

5. State Components as Members of A 100

6. Process Creation and State Components as Operands 108

7. Isolation and Interaction in the Model 114

8. The Model in Perspective 119

5. A Programming Notation For Using the Hodel 124

1- Introduction 124

2. PGL - A Language for Describing P-graphs 12,1

1. Nesting 128

2. Sequencing 128

3. Conditionals and Iteration 132

4. Declarations 135

5. Infix Notation 137

6. Comments 138

7. Macros 138

3. Using PGL - Examples 140

1. Making a Copy of the Stack Component 140

2. A Locking Hechanism 143

3. A LISP Like Eval Operation 146

4. Copying Arbitrary ~rembers of ..0. 149

6

6. Using the Model - Examples

1. Introduction

2. Block Structure and Secret Variables

3. Functions

4. Dijkstra's Semaphores and Parallel Begin

5. Backtracking

6. Non-Deterministic Programming

7. Fisher's Control Primitives

7. Controlling Process Capabilities and

Handling Error Situations

1. Introduction

2. Restircted Operators

3. Restricted Values

4. Examples

1. Inherited Restrictions

2. Describing a Supervisory Process

5. Handling Errors

8. Concluding Remarks

1. Summary

2. Areas for Extending the Research

L Extensions and Changes to the Nodel

2. Relating the Hodel to Analytic Models

3. The Hodel as the Basis For a

Language Extension Facility

Appendix 1 Summary of Prog-Items

Appendix 2 The Model State Transition Rule

References

159

159

160

1~5

170

175

180

187

202

202

20-1

217

221

221

224

228

230

230

232

232

235

236

242

257

261

7

CHAPTER 1

h Model For Process Synthesis

1.1 Introduction

The notion of sequential process has proven to be a

useful conceptual device for dealing with a number of

situations which arise in computing. The process notion has

seen use as a tool for understanding and designing operating

systems [Sa66] [Di68b], as a vehicle for investigating control

aspects of programming languages [Fi70], and as a building

block for simulation of discrete event systems [Da66].

It is usefully employed in situations that can be divided

into two or more parts which operate independently except for "

occasional interaction. The observation that in such

situations certain sequences of actions follow one another

naturally and are, for the most part, independent of other

such sequences is the intuitive basis for the process notion.

Dijkstra [Di68a] uses the phrase "loosely connected" to

describe such processes.

This dissertation investigates the problem of

representing groups of loosely connected processes. The goal

of the investigation is to develop a method for process

representation useful for synthesizing complex patterns of

8 Sec 1.1

process behavior. It is important that the method be capable

of describing both the internal structure of individual

processes and the "interface" structure between interacting

processes.

The rnaj or part of the dissertation is concerned ~..Ti th the

development of a model which captures the essential aspects of

loosely connected processes. The model provides a synthetic

tool for describing situations that involve changing numbers

of processes, interactions between processes, interruption of

process activity and periods of process inactivity. It can

support detailed specification of two aspects of process

behavior: the internal aspects, having to do primarily with

the independent activities of a process and, the external

aspects, having to do primarily with interactions of a process

with other processes. Process behavior patterns such as those

exhibited by subroutines, coroutines, backup programming and

various kinds of parallel processing can be formulated in an

intuitive way in terms of the model.

The model derives much of its descriptive power from its

treatment of the notion of process state. Each process is

"avlare" of its state to the extent that it can manipulate it

in much the same \vay as it can any other data object.

The model for process representation and synthesis

developed in this dissertation has a number of potential

applications. The remainder of this section discusses some of

them.

9 Sec 1.1

The model provides a conceptual framework in terms of

which ideas concerning the process notion can be concisely

formulated. Used in this way it can bring into sharp focus

ideas which might otherNise remain obscure and intuition

bound. One can use the model as a gedanken device for

experimenting with ideas and for communicating them to others.

Contemporary extensible languages, such as BASEL [Che68],

GPL [Gar68] and ELI [Weg70], have been relatively successful

in providing for extension in the area of data types. Using

such a language one can, without much difficulty, define and

use new data types and operations. Such languages display an

almost total absence of facilities for describing new patterns

of flow of control. As a result, there is little that can be

done with them to specify extensions in the area of control.

For example, none include means of sufficient potency to

describe control patterns such as those required to construct

coroutines, simulation primitives or parallel processing. For

this reason one is led to conclude that contemporary

extensible languages are not very strongly extensible but are,

in fact, only slightly perturbable. To realize a truly

extensible language a semantic base capable of supporting

descriptions of control patterns, in addition to

specifications of data types, is required. The ability of the

model to describe both the internal and external aspects of

process activity that are necessary to synthesize a wide

10 Sec 1.1

variety of process behavior patterns makes it attractive for

such an application.

These are interesting and practical situations which can

nost naturally be thought of as involving more than a single

locus of control. }'or example, imagine a fully computeri zed

solution to the air traffic control problem involving ground

and airborne computers, all working together on a single

distributed computation: the scheduling and controlling of

aircraft maneuvers. The participants in the computation would

continually change as aircraft enter (takeoff) and leave

(land) the system. Because conventional programming languages

largely ignore the possibility of concurrency, they are

ill-suited for programming in situations which naturally

involves multiple, interacting loci of control. Its concern

with concurrency, interactions and dynamically changing

numbers of processes makes the model an ideal candidate for

the semantic base of a programming language capable of coping

with concurrency.

1.2 I~elated "lvork

This section surveys previous work that is relevant to

this dissertation. Although most of the work mentioned has to

do with external aspects of process behavior, it is important

to remember that the process representation method developed

in the dissertation is for both internal and external aspects

of process behavior. The external aspects receive more

11

attention here because they are less well understood.

Sec 1. 2

For this survey it is convenient to separate the related

work into four categories:

1. language definition work which seeks techniques for

formally defining programming languages;

2. theoretical work which seeks a fundamental

understanding of phenomena associated with processes,

concurrency and interactions;

3. linguistic work which attempts to provide facilities

for specifying parallelism in programs; and

4. operating system work which makes use of the process

notion as a means for coping with complexity.

Work representative of each category is considered in turn.

1.2.1 Language Definition Work

The primary goal of research in the area of language

definition is development of methods for formally defining

programming languages. aotivations for this research include:

1. providing the language implementer with a complete and

concise definition of the language he is implementing;

2. providing the language designer \vi th a framework for

design and comparison of languages;

3. providing the programmer with a reference he can

consult whenever the usual language primers and

manuals provide insufficiently clear answers to his

questions; and

12 Sec 1.2.1

4. providing a basis for making proofs about properties

of programs and correctness of implementations.

As Section 1.1 notes, most programming languages ignore the

possibility of concurrency. Consequently language definition

techniques, for the most part, have little to say about

external aspects of process behavior.

~ considerable amount of research has been reported in

the area of language definition. Only the techniques most

relevant to this dissertation are discussed. 'lore complete

surveys of the area are to be found in a paper by deBakker

[deB69] and a book edited by Steele [Ste66].

The language definition techniques of interest here are

those ",hich use an interpreting Machine to assign meaning to

language features. Generally, the interpreting machines

operate on abstract representations of programs rather than

directly on the programs themselves (concrete

representations). Because an abstract representation of a

program can better reflect its semantic structure, the

language definitions that result are less complex than they

would be if a concrete representation were used. Typically

the peripheral issue of parsing is side-stepped by defining a

mapping from abstract to concrete representation and by

assuming that the inverse mapping exists and is well defined.

~'1ost techniques of this type are based on work by Landin and

l1cCarthy.

13 Sec 1.2.1

As part of an effort directed toward developing a

language definition method based on the A-calculus of Church

[ChuSl], Landin [Lan64], [Lan6S] developed a ~echanism for

evaluating expressions. His expression interpreter, called

the SECD interpreter, evaluates "applicative expressions",

expressions constructed from "knovm" constants by functional

application and function abstraction. It consists of a stack

(S), whose items are intermediate results awaiting subsequent

use, an environment (E), made up of name-value pairs, a

control (C), which is a representation of the expression being

evaluated, and a dump (D), used in evaluating functional

applications. Wozencraft and Evans [Wo70] have shown how to

extend the SECD ~echanism to interpret programs containing

imperative features such as assignment and transfer of

control.

McCarthy [Mc66] uses the notion of state as the basis for

a language definition technique. The semantics of a language

L are defined in terms of a state vector function FL which

specifies how programs in L transform a state vector f. The

meaning of a program P can be deduced by evaluating F
L

(Pa,r)

which is the state vector that results from applying Pa, the

abstract representation of P, to r. F acts as an interpreter
L

for the program Pa. Embedded in it are the rules necessary

for interpreting L programs. COMponents of the state vector

include "data" which provides an environment in which.to carry

out interpretation of L programs. For example, a definition

14 Sec 1.2.1

of Landin's applicative expression language would consist of a

function PAc describir.g the operation of the SECD interpreter.

The state vector r would include S, E and D; Pa would

correspond to C.

The result of perhaps the most extensive effort in the

area of language definition is the method developed by the IBH

Vienna Laboratory [Lu68aJ. The so-called Vienna method was

devised as part of an effort directed toward preparing a

completely formal definition for PL/I. It provides a

metalanguage and a basic abstract machine for constructing

language definitions. The metalanguage includes the

propositional calculus, conditional expressions, function

composition, and operators for manipulating structured

objects. A set of states { f~1 and a state transition function

1\define the basic machine. When applied to a state the

transition function produces a set of possible successor

states from which one is chosen as the actual successor. A

sequence of states, [, (, ... , r.., where f = an initial stateo I k So

and fc. E:!\.(fi.-I), defines· a computation. The nondeterministic

nature of the basic machine allows sets of actions to be

performed in an unspecified order. This makes it possible to

make language definitions which, where appropriate, leave open

certain aspects of a language, such as the order in which the

operands of binary operators are evaluated. It can also be

used to simulate concurrency.

15 Sec 1.2.1

The definition of a particular language by the Vienna

method includes detailed specification of the state structure

and definition, in the form of a set of instructions, of how

the basic machine transforms states. To define PL/I the

metalanguage is used to describe an abstract representation

for PL/I programs, the translation from abstract

representation to concrete representation, the translation

from abstract representation tv initial machine states and a

set of instructions for the basic machine. Each syntactically

correct concrete program defines an initial machine state,

part of which includes instructions for the basic machine.

The behavior of the basic machine \vhen "started" from an

initial state provides the meaning for the corresponding PL/I

program.

The Vienna method has been used to define other languages

including ALGOL 60 [LauG8] , APL [Ger70] and BASIC [Lee69]. In

addition, it has been exploited to investigate certain

implementation issues concerning PL/I. Lucas has used it to

show the equivalence of bvo interpretations of the PL/I block

concept [Lu68b] and to uncover a subtle bug in a PL/I compiler

[Lu7l].

The work in language definition has influenced the

development of the method for process representation in two

respects. The conceptual basis for the notions of process

state and process state transition rule, as they appear in the

model, is to be found in McCarthy's work. And, parts of the

16 Sec 1.2.1

Model which deal with internal aspects of orocess behavior are

similar in some respects to Landin's SEeD mechanism.

1.2.2 Theoretical Work

The desire to develop a design methodology for hardware

constructed from asynchronously operating components has been

Motivation for much theoretical work. Typically, the approach

taken is to devise a model that can be used to investigate, at

a fundamental level, situations involving interactions betwee~

asynchronous operations. The models generally consist of a

collection of computing and memory elements. The computing

elements operate according to rules which, depending upon the

particular model, permit various degrees of concurrency. The

memory elements are read and written by the computing elements

for input and outout. The investigations proceed by placing

constraints on the models in attempting to answer questions

concerning desirable behavioral properties. One such property

is determinacy. A collection of computing elements is said to

be determinate if the results of computations it performs are

independent of the relative speeds of asynchronous operations.

Typically, constraints which disallow more than a single

computing element to change the same memory element at any

time are placed on the models. The results of such

investigations are usually conditions which are sufficient to

insure a particular property or under which certain

equivalence questions are decidable.

17 Sec 1.2.2

Van Horn [VH66] uses a model called "machines for

coordinated multiprocessing" to investigate constraints \!lhich

insure that the sequence of values in each memory element is a

unique function of the initial state of the model. Systems

'Vlhich display such behavior are said to exhibit complete

functionality. Constraints which insure output functionality,

behavior in which only a subset of the memory elements need

contain unique sequences of values, are the subject of

Luconi's work [Luc68]. Slutz [SluGS] and Karp and Miller

[Ka68] have developed models for representing and studying

algorithms containing parallelism; the emphasis of their work

is on decision procedures for properties such as equivalence

and determinacy.

In his dissertation Haberman [HaG7] studies situations

involving collections of cooperating abstract machines ln

which one machine performing a task can generate tasks for

others. In his model the input for each machine is the output

tape of another; a machine may proceed no further than the

availability of its input permits. Haberman looks for

conditions which insure that all machines in such a system

eventually return to their "homing positions".

For the moaels cited above, the computing elements have

no internal structure and can be treated as "black boxes" in

analysis. Furthermore, the computations performed by the

individual computing elements are left unspecified. That is,

no interpretation is assigned to then. The only assumption

18 Sec 1.2.2

made is that each computes a fixed but unspecified function.

Such models are said to be uninterprcted. Some work, such as

that of Slutz and of Karp and Hiller, uses such uninterpreted

models to avoid the undecidability results associated with

interpreted algorithms. In Haberman's work the internal

activities of the individual abstract machines are ignored

because they are considered to be irrelevant to the question

of harmonious cooperation. In any event, the tasks and the

manner in which they are accomplished are not representable in

terms of these models. lIence, while they are vlell sui ted for

investigating conditions which insure certain general

behavioral properties, these models are inadequate for

synthesizing specific behavioral patterns.

1.2.3 Linguistic Work

The linguistic work has been concerned primarily with

proposals for language features which allow a programmer to

indicate that sections of program are to be executed in

parallel. These features are generally suggested as

extensions to existing languages such as FORT&~i or ALGOL.

Because most of the proposals have not been included in

complete language designs they are difficult to evaluate.

Conway [Con63], Anderson [An65] and Opler [Op65] propose

and illustrate the use of statements for initiating and

terminating parallel execution paths. The statements "fork",

"join" and "terminate" are representative of their proposals.

19 Sec 1.2.3

Separation of a single locus of control into two (or more,

depending upon the proposal) loci can be specified by "fork.";

"join" specifies the merger of several loci into a single one.

A parallel path can be terminated by the "terminate"

statement.

Hirth [Vli66] proposes use of "and" to specify the

possibility of parallel execution; the decision as to whether

or not execution is, in fact, parallel would be left t9 the

implementer. Thus the phrase

Sl and S2 and S3

indicates that Sl, 82 and S3 can be executed either in

parallel, or sequentially in any order, or even in some

fashion in which parts of the execution of each are

interleaved. Dijkstra [Di68a] proposes "parbegin" and

"parend" to bracket statements that are to be executed in

parallel. The entire construction between the brackets is

regarded as a single compound statement whose execution is

completed when the execution of all its constituents is

completed. Thus

begin
Sl;
parbegin 82; S3; 84 parend;
S5

end

indicates that after completion of 81, the statements 82, 83,

and 84 are to be executed in parallel and only after all of

them are finished is 85 to be executed.

20 Sec 1.2.3

Some, but not all, of the proposals discussed above

include mechanisms for enabling a single path to obtain and

release the sole use of variables accessible to several paths.

The tasking facility of PL/I [Be70], [IBM69] provides

Deans to specify two or more concurrent program executions

(tasks). PL/I allows tasks to be created under program

control and provides facilities for synchronizing tasks,

terrninatinq tasks and testing for task completion. An

interrupt handling mechanism is provided hy PL/I's ON

condition facility which allows a programmer to specify

actions taken when certain interrupt conditions hold. Both

tasking and ON conditions in PL/I display anomalies. For

example, the lifetime of a task may not exceed that of the

block which initiated it. Such anomalies are probably, in

part, the result of the language having been designed with a

particular implementation and operating environment in mind.

The features discussed above represent first attempts at

introducing concurrency into programming languages. Using

them one can, indeed, write programs which exhibit mUltiple

loci of control. However, the kinds of interactions between

such loci that can be described conveniently are rather

limited. ~his is due, in part, to limited goals and, in part,

to the fact that the features have been added as afterthoughts

to already existing language designs. The realization of

languages well suited for describing multiple, interacting

loci of control requires that their design be based on a

21 Sec 1.2.3

fundamental understanding of processes and interactions

between them.

The language SI~1ULA [Da66] is representative of a num0er

of simulation languages which make use of the process notion.

It uses orocesses as the basis for decomposing discrete event

systems into separately describable components. The actions

and interactions of collections of processes are taken to

represent the behavior of such systems. Although SIHULA

processes can be thought of as evolving concurrently, SIMULA

provides a basically quasi-parallel environment in which the

programmer explicitly schedules the running of processes in

order to simulate the behavior of a particular system. Such a

quasi-parallel environment is useful for certain simulation

applications. However, because the programmer must concern

himself with issues such as scheduling in order to achieve the

effect of concurrency, SIr1ULA only weakly supports the notion

of concurrently evolving, interacting processes. In all

fairness, it is necessary to add that the ability to

synthesize groups of loosely connected processes is not a

stated design goal for SIHULA and languages of which it is

representative.

1.2.4 Operating System Work

The process notion is frequently used as a tool in the

design and implementation of operating systems. It provides a

basis for discussion of the behavior of complex computer

22 Sec 1.2.4

systens. Saltzer [Sa66] pioneered its use in discussing the

design of an operating system.

Dijkstra [Di68b] describes an operating system which is

arranged as a society of sequential processes. In that system

a process corresponds to each user program and to each

peripheral device. Dijkstra claims that the use of the

process notion combined with a hierarchical structure made

proof of the correctness of the operating system by "discrete

reasoning" ?ossible.

r~he riULrrICS [Cor65] operating system associates a process

with each logged-in user. In addition, it associates

processes with certain system provided services. User

processes can make requests of such processes. For example,

to ontain listings a user requests service from the process

corresponding to the line printer. ~ system provided backup

service is performed by a "daemon" process that perioc1ically

writes user files onto tapes.

'1any onerating systems incorporate the process notion in

one guise or another. However, in most the properties of

processes are obscured by implementation details which are

peculiar to the particular system. In addition, few operating

systems make the process structure available to the user of

the system. A notable exception in this respect is the TENEX

[BBN70] operating system developed for the PDP-IO which

permits a user to create and destroy processes as he sees fit.

1.2.5 Other Work

23 Sec 1.2.5

Before concluding this discussion it is important to note

two other efforts, neither of which fit neatly into the above

categories.

A proposal by Leavenworth [Lea69] has influenced the

treatment of the notion of state in the process representation

method developed in this dissertion. Leavenworth considers a

programming language which includes as data objects states of

its m'1n interpreter. The language he considers, i1cG [Bur6 8] ,

is similar to that proposed by Landin as ISWIM [Lan66] and

implemented as PAL [Ev68]i its interpreter is similar to the

SEeD interpreter. Although the specific mechanism proposed is

rather clumsy, it is possible for a programmer to define

functions which transform the current state of the

interpreter. In addition, it is possible to create, from

scratch, data objects which can subsequently be used as

interpreter states. Leavenworth's paper includes several

examples which illustrate how this mechanism can be used to

define sophisticated control structures.

In a thesis which investigates control structures of

progra~~ing languages and proposes several new and interesting

ones, Fisher [Fi70] attempts to isolate primitive control

operations from which more complex control structures can be

built. The explanation of his primitive operations makes

heavy use of the process notion. ~\jeither a definition nor a

24 Sec 1.2.5

discussion of the term "process" is included in his work. As

a result, the meanings of the more interesting control

primitives, those concerned with monitoring, synchronization,

and relative continuity are only as precise as the reader's

intuitive notion of process.

Fisher describes a control definition language which

includes his primitives. That language can support

descriptions of a wide variety of behavioral patterns. There

is a significant difference between the approach Fisher takes

and the one taken here. Fisher's approach is an axiomatic

one. The question his work addresses is: Independent of

implementational considerations, what is an intuitively

appealing set of primitive operations for describing control?

The approach taken here is mechanistic and addresses the

question: lImv can processes be represented in order to

facilitate synthesis of complex process behavior patterns?

The answer comes in the form of a model which can be used as a

base for synthesis of a wide variety of control patterns. In

Section 6.6 of this dissertation Fisher's primitives are

discussed further and defined in terms of the model.

1.3 Plan For the Dissertation

Conceptually, this dissertation is divided into three

phases. The first phase isolates the concepts which are to

form the basis for the process representation technique. The

second phase develops a model for process representation and

25 Sec 1. 3

synthesis which captures those concepts. 'fhe third phase

demonstrates, by example, that the model developed is useful

for describing process behavior patterns.

Chapter 2 (part of the first phase) examines the process

notion and characterizes the class of processes of interest.

It considers constraints placed on the process representation

method by the requirement that it be able to describe both

internal and external aspects of process behavior. The model

for process representation and synthesis is defined in

Chapters 3 and 4 (parts of the second phase). Chapter 3

considers the model in overview. In Chapter 4 it is presented

in more detail. Chapter 4 notes a weakness in the model, to

be corrected in Chapter 7, concerning its ability to describe

situations involving processes with different capabilities.

Chapters 5 and 6 (parts of the third phase) are concerned with

using the model to describe process behavior patterns. A

simple programming notation for the model is defined in the

first part of Chapter 5. The remainder of Chapter 5 and all

of Chapter 6 illustrate use of the model to define

sophisticated patterns of process behavior. In Chapter 7

(part of all three phases) the problem of controlling the

capabilities of processes is considered and extensions are

made to the model (as described in Chapters 3 and 4) which

make it possible to do so. Chapter 8 completes the

dissertation by suggesting areas for extending the work

presented in it.

26

CHAPTER 2

Hotivation For The :1odel

2.1 Introduction

This chapter discusses considerations which form the

intuitive basis for the model for process representation. It

begins by examining the process notion and by characterizing

the class of processes of interest. The chapter continues by

considering requirements placed on the model by the ability to

describe groups of loosely connected processes. External

aspects of process behavior such as those related to

interactions between processes, interruption of process

activity and changing numbers of processes are considered.

Discussion turns next to internal aspects of process behavior,

such as the binding of identifiers and the universe of

discourse for processes, and then to a preview of the

treatment the notion of process state receives in the model.

The chapter concludes by presenting a list of specific

questions the model addresses.

2.2 The Process Notion

An important difference between computation and

traditional mathematics is captured by the notion of process.

The realm of traditional mathematics is infinite and timeless.

27 Sec 2.2

It deals with collections of values which are often infinite.

Operations are defined as mappings from one set of values to

another. There is little more to be said about such

operations beyond demonstrating that they have certain

properties. On the other hand, the realm of computation can

be characterized as finite and dynamic. Its concern is with

finite collections of value representations. operations are

performed for the effect they have. They generate new value

representations from existing ones. The orocess notion

captures the idea of continual change.

As our starting point we take an intuitive definition for

the term process.

A process is an activity comprised of a time-ordered

sequence of actions. A process is an abstract entity

and therefore can not be directly observed. The

evidence for the existence of a process is change.

~'1aking this definition more precise and thereby aChieving a

deeper understanding of the process notion is a primary goal

for the rer:tainder of this chapter. The model for process

representation described in Chapters 3, 4 and 7 provides a

very precise definition for the term process which captures

the conceots and intuitions developed in this chapter.

It is useful to think of there being both a passive

member and an active agent associated with a process. As the

process evolves the condition of the passive member changes in

response to the actions of the active agent.

28 Sec 2.2

The condition of the passive member is described by the

process state. At any given time the state of a process,

together with the "rules" used by the active agent to change

it, represents all there is to be known about the process.

The state describes all that is accessible to the active

agent. An important idea has been introduced:

The extent of the changes resulting from the activity

of a process is isolated; the effect the actions of a

process can have is limited to that which is

accessible from its state.

The active agent is called the processor. Although the

process representation method to be presented is capable of

describing the time multiplexing of processors, this

dissertation is not concerned with such issues. Consequently

each process is assumed to have its own processoro The

periods of process inactivity the model is capable of

describing do not result from the non-availability of physical

processors but rather occur whenever a process temporarily

runs out of things to do and awaits an occurrence that will

enable it to continue.

The class of processes under consideration is limited to

those for which the actions taken by a processor depend only

upon the process state. For such processes it makes sense to

talk of a state transition rule and to view the processor as

that which changes the process state according to the state

transition rule. Furthermore, in structuring the process

29 Sec 2.2

state it is useful to separate out part of it, a program

component, \Jhich is interpreted by the pro.cessor. 'fhe program

component is a specification of the future behavior of the

process. The speci fic actions taken v1hen the program

component is interpreted may, in general, depend upon

information (data) found in other parts of the process state.

The possibility of (at least part of) the state of a

process being changed by other than the processor associated

with the process has not been excluded. Indeed, interactions

between processes require that one process be able to change

information accessible to another. That is, to interact, it

is necessary that one process be able to change (at least part

of) the state of another.

It is appropriate at this point to summarize:

1. A process is the activity of a processor interpreting

and changing a state in accordance with a state

transition rule.

2. The effect the actions of a process can have is

limited to that which is accessible from its state.

3. The state of a process includes a specification of its

future behavior. The process evolves as its processor

interprets that specification in ~~e environment

provided by the remaining parts of its state.

4. Part of a process state may change in response to the

actions of other processes.

It is important to remember that a process is neither the

30 Sec 2.2

processor nor the process state but rather the activity of the

processor as it changes the process state. This view of

process is consistent with that proposed by Dennis and Van

Horn [Dns66] of an "abstract entity vlhich moves through the

instructions of a procedure as the procedure is executed by a

processor".

2.3 The Role of Memory

The term "memory" frequently brings to mind physical

storage devices such as core, machine registers, disc units,

etc. In this dissertation the term memory is used in a more

abstract sense to mean a collection of passive elements \'lhich

are capable of holding information.

The passive member or state associated with a process

"resides" in memory. As the process evolves, its state and,

therefore, the condition of memory chanqe. The state of a

process defines the memory elements accessible to the process.

It is those parts of memory which are interpreted and changed

as the process carries on its activity.

An important notion has been introduced:

Processes have memory requirements.

This view of the relation of processes and memory is

consistent with the practice of identifying a process with an

address space [Sa66] [Lam6 8] •

31 Sec 2.3

As implied above, the model does not deal directly with

physical memory devices. Rather, it deals with an abstract or

virtual memory. Virtual Memory can have properties

significantly different from those exhibited by physical

memory devices. For example, a virtual memory may provide the

illusion that memory is much larger than the available core

memory, that access to memory is liMited, or that memory is

organized in a particular way. Examples of virtual memory

include: the MULTICS segmented memory [Cor65] for which

addresses are two-dimensional and access to a memory element

May be constrained to be read only, write only or instruction

fetch only; PAL memory [Ev68] for which memory elements are

stretchable and can contain arbitrarily large amounts of

information; and LISP memory [~1c62] for Tl'1hich memory elements

have two parts: car and cdr. Of course, an implementation of

a virtual memory must transform virtual memory operations into

physical memory operations. This dissertation is not

concerned T.vi th the problems of implementing virtual memories.

The reader interested in such issues is refered to the

tutorial paper by Denning [Dng70] on that subject.

virtual memory can be thought of as a parameter for model

description. By varying it models with very different

properties can be obtained. It is appropriate to note here

three properties of physical memory which are preserved in the

model virtual memory:

1. the possibility of running out of memory exists

32 Sec 2.3

(fini tenes s) ;

2. when a memory element is simultaneously presented with

two or more storage or retrieval requests it handles

them sequentially rather than concurrently (arbiting

ability); and

3. a distinction is made between memory elements, names

of memory elements and "contents" of memory elements.

Details of the particular virtual memory incorporated into the

model are described in Section 4.2.

2.4 Controlled Interactions

The possibility of interactions between processes

suggests that process behavior has two aspects. It has

external aspects, concerned prirnari ly vli th interactions \"i th

other processes o And, it has internal aspects, concerned

primarily with activity which is independent of other

processes. The structure of process states in the model

reflects this distinction. Certain state components of the

state are used mostly in connection with internal actions

while others are used primarily in connection with external

actions. Although this distinction proves to be useful, it is

not a rigid one because external actions are frequently

undertaken to achieve the internal goals of a process.

Interactions between processes can occur only through

memory that is shared by the processes. It is useful to view

systematic interaction as occuring by way of the exchange of

messages in shared memory.

33 Sec 2.4

Before two previously non-interacting processes can begin

to interact certain prerequisites must be satisfied. Spier

and Organick [Sp69] have noted that these prerequisites must

be satisfied externally to the two processes. The

prerequisites are:

1. each process must be aware of the other's existence:

2. the processes must have access to common memory: and

3. conventions must be established in order that the

processes can detect the occurrence of interactions

and interpret their meaning.

~hese prerequisites place requirements on the model.

Since more than two processes may exist simultaneously a means

for identifying processes is needed. That is, the model must

include in some form the notion of process identifier. There

must be a way to achieve shared memory between two processes.

This could be accomplished by organizing the process state

such that part of it is accessible by way of process

identifier to all (authorized) processes or by providing

operations which make it possible to achieve overlap in the

memory that is accessible from separate process states.

Process which interact are no longer isolated from one

another, for to interact each must sacrifice some of its

independence. The means for cooperative interaction is also

potentially the source of destructive interference. It is

Sec 2.434

important to provide along with the means for achieving

interactions the means for controlling them.

The key to controlled interactions is the notion

introduced in Section 2.2 that there are limitations to the

effect the actions of a orocess can have. In particular, that

there are limitations to the effect one process can have on

another, The key is to relax process isolation sufficiently

to permit interaction but not enough to allow interference.

Virtual memory plays an important role in achieving this kind

of process isolation. An obvious minimal requirement for the

virtual memory is that it deny free access to arbitrary memory

elements. (This point is discussed further in Section 4.2,

Section 4.7 and Chapter 7.)

The distinction proposed earlier between internal and

external actions can be refined. Within a process, internal

actions are those whose effect can be guaranteed to be limited

to that process' state. External actions are those which,

because they effect other process states, require close

monitoring to insure that the process stays within its

limitations.

2.5 Events

The occurrence of something of interest to a particular

process is an event. The discussion of events in this section

is largely from the point of view of the interested process.

35 Sec 2.5

An event can occur only as the result of the action of

some process. Frequently, but not always, an event is the

result of the action of a process other than the interested

process and, therefore, represents part of an interaction

between processes. The occurrence of an error situation and

the arrival of a message from another process are examples of

typical events.

Although events are often anticipated, they typically

occur at unpredictable times. Consequently, it is necessary

for a process to monitor for the occurrence of events of

interest. The monitoring may occur either explicitly or

implicitly. Explicit monitoring occurs at the direction of

the process and appears as actions encoded in the program

component of its state. Implicit monitoring occurs

automatically as part of the activity of the process. Events

detected by implicit monitoring are usually called interrupts.

(Host hardware processors automatically monitor for the

occurrence of certain events, such as the appearance of a

voltage level on a narticular bus.) vfuile at some level

monitoring is necessar/, it makes a significant difference in

synthesizing interacting processes whether monitoring can be

assumed to occur automatically or whether processes must

explicitly check for event occurrence.

Implicit monitoring for certain kinds of events is

incorporated into the model. In addition, it is possible to

explicitly monitor for others.

36 Sec 2.5

Dealing vii th events detected by explicit monitoring

presents little that is new. A process merely checks for and

responds to the occurrence of events whenever it sees fit to

do so.

On the other hand, the possibility of interrupt events

places interesting requirements on the model. Because a

process has little control over when an interruot event will

be detected it must be prepared to respond to the occurrence

of an interrupt event at all times. Its response to an

interrupt event includes suspension of its current activity,

with the possibility of later resuming it, in order to perform

an action appropriate to the particular event. The ability to

respond in this manner requires means for remembering the

interupted activity and, in addition, a "programmed" response

for each anticipated interrupt event.

Because interrupt events are caused by processes, the

possibility of one process interrupting another to the point

of interference exists. If interrupt events are to be

allowed, it is important that a process have the means to

control whether its current activity is interrupted whenever a

particular interrupt event occurs. Ideally, if continuing

uninterrupted is more important to a process than responding

to the occurrence of a particular interrupt event, it should

be able to postpone its response. Such an ability requires

that a process have both the means to specify the importance

of continuing its current activity relative to that of

37 Sec 2.5

responding to various interrupt events and the means to

remember that an interrupt event has occurred until it chooses

to respond to it.

vllien a number of interrupt events occur in quick

succession the "current activity" may well be the response to

an earlier interrupt. Consequently, a method for specifying

the relative urgency of particular interrupt events is

desirable. Furthermore, it is frequently the case in such

situations that the order in which the events occur is

important; hence it is desirable that not only the occurrence

of interrupt events but also their order of occurrence be

remembered. There is, of course, a limit to the number of

interrupt events that can be remembered at any time.

2.6 Changing N~~bers of Processes

At the request of existing processes new ones can be

created. 7he creating process must, of course, specify an

initial state for the new process. As far as the creating

process is concerned, process creation is an atomic act.

However, from the previous discussion it is clear that process

creation includes:

1. fulfilling the memory requirements of the new process;

2. insuring the isolation of the new process from

existing processes;

3. associating a processor with the new process; and

4. associating a process identifier with the new process.

38 Sec 2.6

The first two actions involve the virtual memory-physical

memory interface and, the third, the mUltiplexing of physical

processors.

Because a process requires resources, whenever it

completes its activity or whenever its actions are deemed no

longer necessarj it should cease to exist. How should process

destruction be initiated? There are at least three

possibilities:

1. suicide: a process ceases to exist as a result of its

own actions;

2. murder: a process is forced out of existence by

another; and

3. orphanage: a process ceases to exist because its

creator has been destroyed.

All but suicide reoresent potential sources of interference

between processes. The model provides suicide as the only

means of initiating process destruction. The effect of murder

can be achieved when one process coa~its suicide at the

request of another. Destruction by orphanage can be achieved

in a similar way.

The possibility of process creation and destruction gives

rise to interesting questions concerning the amount of control

(if any) one process can exert over another and the

capabilities of processes with respect to one another. For

example, it seems reasonable that a process should be able to

exert some degree of control over those it creates. Questions

39 Sec 2.6

such as these are considered further in Section 2.9.1, Section

4.7 and Chapter 7.

2.7 Internal Aspects of Process Behavior

7he discussion so far has focused on the requirement that

the method for process representation support descriptions of

interactions between processes. It is equally important that

it be able to describe how individual processes structure

their sequences of ac~ions to achieve their internal goals.

The way a process actually evolves is an important part

of its behavior. As Section 2.2 notes, the actions a process

performs are encoded in the program component of its state.

The Drocessor traces a oath through the program focusing first

on one encoded o?eration and then on another. The information

needed to control the evolution of that ?ath must be part of

the process state. After completing a state transition, in

order to initiate the next one, the processor needs to know

L what the next operation is; and

2. whether or not it is to be performed now (recall that

interruption of process activity is possible, as are

periods of process inactivity).

The process state must include this infor~ation since it

includes all there is to be known about a process.

As a process evolves, it produces results or values which

are of only short term or temporary interest. Once used they

40 Sec 2.7

can be discarded. However, until they are used such

intermediate results must be held somewhere. What constitutes

an intermediate result depends upon the sequence of actions

which are of interest. For example, when the sequence of

actions under consideration are those comprising the execution

of a single hardware machine instruction, the contents of

storage buffer and storage address registers can be considered

intermediate results. On the other hand, if those comprising

the execution of a block of instructions are of interest the

contents of index registers and accumulators represent

intermediat~ results. The point to be noted is that processes

require a mechanism for retaining intermediate results.

Pushdown stacks provide a very simple mechanism for temporary

storage. As intermediate results are produced they can be

pushed onto a stack and as they are used, popped from it.

The specific operations processes can perform represent

an important aspect of their behavior. From previous sections

it is clear that there are operations to cause interrupt

events, to create other processes, to initiate process

destruction and to interact with virtual memory. Another

class of operations, of particular interest when considering

internal behavior, has to do with the kinds of objects

processes can directly deal with. That class of operations

defines a universe of discourse (A) for processes. Integers,

for example, are considered to be part of the universe of

discourse if arithmetic operations are included in the

41 Sec 2.7

operation repetoire but are not if arithmetic operations are

absent, even if they can be imple~ented with sequences of

other operations. 'rhe universe of discourse for the model is

described in detail in Chapter 4. Like virtual memory, it can

be thought of as a parameter for model description. ~odels of

quite different properties result from varying it.

To be a useful device for synthesis the model should

include features ,vhich make it easy to bui Id complex behavior

patterns from basic operations. That is, the model should

include features making it attractive to program. Two such

features, used to great advantage in programming languages,

are included in the model. One is the ability to use

identifiers of one's own choosing to denote particular values

and the other is a data structure facility.

The relation between an identifier and the object it

denotes is called a binding. Hhen such a relation exists

between an identifier and a value, the identifier is said to

be bound to its (the) value. Conventional hardware is

incapable of coping with identifier-value bindings. As a

result it can not directly mechanize programs involving them.

Two approaches are commonly used to handle identifier-value

bindings. One approach is to bind identifiers to memory

locations by systematically replacing references to

identifiers by references to memory locations. The

programming languages FORTRAN, ALGOL, and PL/I are usually

implemented by "compiling" identifiers in this way. The other

42 Sec 2.7

approach is to implement a virtual machine or interpreter

capable of dealing with identifier-value bindings by

augmenting the hardware wi th soft~.,are. The dynamic linking

capability provided by the MULTICS operating system requires

such a virtual machine. The LISP and PAL interpreters are

other examples of virtual machines which can handle

identifier-value bindings.

Because issues concerned with the compilation of

identifiers are not of interest in this dissertation, the

model incorporates the second approach. That is, a process is

capable of interpreting identifiers appearing in the program

cO:r.lponent of its state. This capability requires that the

state include a record of identifier-value bindings. As a

process evolves its identifier-value bindings may change.

Consequently, operations for creating and deleting bindings

are required.

The data structure facility of the model provides

construction operations for building structures from

collections of parts and selection operations for accessing

components of structures. Usually, a distinction is made

bet~.,een structures on the basis of how components are

selected. There are those structures, usually called vectors,

tuples, or arrays, whose components are selected by integer or

subscript. And, there are those, usually refered to simply as

structures, whose parts are selected by name.

43 Sec 2.7

Structure operations supported by prograrnminq languages

are usually implemented by mapping them into physical memory

operations by a compilation process. In a sense, compilers

for such languages impleMent virtual memories. To avoid

getting involved with questions concerned with how mappings

from structure operations to physical memory operations are

accomplished, structures are included in the universe of

discourse of the model.

2.8 The Process State as a Data Object

~lany interesting behavioral patterns exhibited by

processes are conveniently described directly in terms of

state transformations. Consider, for example, how subroutine

behavior exhibited by a single process could be explained in

terms of operations which extract, manipulate and set its

state. The subroutine pattern consists of a call, a save, and

a return. Hhen a process performs the call and save it

transforms its state to prepare for the subroutine execution.

It sets its progra~ component to correspond to the subroutine

"code" and the other parts of its state to include "the

bindings for the formal parameters of the subroutine and the

values certain components of its state had at the point of

call. It accomplishes the return by restoring the values of

those components of its state which it saved at the point of

call.

44 Sec 2.8

The process state is a natural vehicle for describing the

interrelation of the internal and external aspects of process

behavior. For example, the behavior of a process subsequent

to an externally caused interrupt event depends, in part, upon

its internal activity. The occurrence of the event and the

reaction of the process to it can be described conveniently

and intuitively in terms of the state of the process, just

prior to the event, and subsequent changes to it.

The process representation method includes means to

describe behavioral patterns directly in terms of state

transformations. The model allows processes to directly

modify their own state. The values of components of the

current process state can be lIextracted ll and operated upon as

ordinary data objects. Furthermore, a process can perform

operations on data objects which it can subsequently use as

components for its own state. It can, for example, construct

a structure which represents identifier-value bindings and by

an appropriate operation specify that the structure be used as

the identifier-value bindings component for its state. The

subroutine pattern, as described above, involves this kind of

state transformation.

2.9 Other Issues

2.9.1 On the Independence of Processes

The issues considered in previous sections, concerning

initiation of process destruction, isolation of processes, and

45 Sec 2.9.1

preventing interruption of the current activity of a process,

all relate to process independence. How much of it and in

what ways should it be relinquished to permit useful

interactions between processes? The question follows: Can one

process be forced by another to do something? That is, within

what bounds can one process control another?

In the model a process is, in principle, independent to

the extent that after its creation it determines its own

destiny. This is consistent with the goal that the model

describe groups of processes which operate independently

except for occassional interactions between them. Hence, one

process can not force another to do something; it may merely

call the other's attention to its wishes.

The situation is not nearly so anarchic as it might seem.

When a process creates another it specifies an initial state

for the new process. The creating process has, in effect,

control over the behavior of the new process. It sets the

program component for the new process and specifies how it is

to respond to interrupt events. Therefore, although one

process can not directly force another process to do

sOMething, processes can be created such that they respond

obediently to the wishes of other processes. Furthermore,

although the Model insures that nrocesses are normally

isolated from one another, it includes mechanisms enabling a

process to relinquish a large amount of its isolation by

granting another access to what normally only it could access.

46

2.9.2 The \1orld External to the Model

Sec 2.9.2

It is not intended for groups of processes synthesized by

the model to exist completely independently of the outside

world. For the model to be capable of describing situations

of practical interest it must be able to describe interactions

with the outside world so that processes can obtain input and

report outout.

ns far as any process is concerned there is little to

distinguish its interactions with the outside world from those

with other processes, nor is there much to distinguish

interrupt events caused by the outside world from those caused

by other processes. Consequently, the outside world can be

adequately represented by a process or group of processes.

In order for a process to interact with another it is

unnecessary for it to understand the other's behavior in

detail. Therefore, there is no need to specify the detailed

behavior of nrocesses representing the outside world.

Whenever it is necessary to discuss the interactions of

processes with the outside world, the approach taken in the

sequel is to make no more assumptions concerning the behavior

of the process (or processes) representing the outside world

than necessary to pe~~it processes to interact with it (them).

47 Sec 2.9.3

2.9.3 On the Traditional Problems Arising Prom Concurrency

The ability of a group of processes to evolve

concurrently is a manifestation of their relative

independence. Because interaction between processes can

occur, their relative independence is not total.

It is frequently important to coordinate the behavior of

such processes. For example, processes are typically

coordinated in order to avoid, or at least to resolve, race

conditions in which two processes attempt to change the same

data item at the same time or in order to prevent one process

from accessing data which temporarily is in an inconsistent

state because another is modifying it. Achieving such

behavior is variously called coordination, synchronization, or

mutual exclusion.

The arbiting ability of memory plays an important role in

achieving coordinated behavior. The model copes with

coordination at two levels:

1. Coordination is involved as part of some of the

built-in operations a orocess can perform. Such

operations and the coordination required are discussed

in Chapters 3 and 4.

2. The model can be used to define groups of processes

which exhibit coordinated behavior. That is, it

includes means to synthesize coordinated behavior.

48 Sec 2.9.3

Typically, coordination techniques require processes to

adhere to certain conventions regarding the use of some type

of locking mechanism. The semaphore and P and V operations

introduced by Dijkstra [Di68a] provide an elegant mechanism

for achieving coordination. Section 6.4 illustrates how the

model can be used to describe processes coordinated by

semaphores.

The locking mechanism which makes coordinated behavior

possible unfortunately also makes the following kind of

situation oossible:

Process A has item 1 locked and will not unlock it

until it uses item 2 which is currently locked by

Process B. Similarly Process B will not unlock item 2

until it uses item 1.

Neither process can proceed.

Such deadlock or deadly embrace situations are almost always

undesirable and are usually catastrophic. Haberman [Ha69] and

Dijkstra [Di68a] have investigated strategies for preventing

deadly embrace. The attitude taken in this dissertation is

that a model with sufficient constraints to insure that deadly

embrace situations can not arise would be too strongly

constrained to be of practical interest. This does not imply

that deadly embrace can not be avoided. Indeed, programmers

\villing to discipline themselves appropriately can

successfully avoid describing such situations. In this regard

deadly embrace is somewhat analogous to looping. A

49 Sec 2.9.3

programning l~nguage sufficiently constrained to prevent

specification of programs with endless loops is of little

practical inter.est. However this does not prevent programmers

from writing terminating programs in practical languages.

2.9.4 IIml the Notion of an Executive Fits In

The notion of an executive is relevant when discussing

how the model might be implemented on a conventional digital

computer.

In an implementation a single "atomic" process action

might, in reality, be the result of a number of executive

actions. The executive actions would, of course, be invisible

to the process. That is, processes would be unaware of the

existence of an executive.

Among the responsibilities of the executive would be:

1. Associating with each process a processor.

This involves multiplexing hard\'lare processors.

2. Implementing the state transition rule.

This includes implementation of operations which are

not built into the hardvlare processor and, in

addition, "monitoring" for the occurrence of interrupt

events.

3. Providing the illusion of a virtual memory by managing

the allocation of physical memory and transforming

virtual memory operations into physical memory

50 Sec 2.9.4

operations.

4. Insuring that processes are isolated from one another.

This includes "monitoring" the external operations

undertaken by a process.

The executive would deal directly with hardware and operating

system software (if any) to accomplish these things.

2.10 Toward a Particular Hodel

The issues raised in this chapter can be reformulated as

a list of specific questions which the model addresses. The

questions are conveniently divided into two groups: those

related primarily to internal aspects of process behavior and

those related primarily to external aspects.

The specific questions related to internal aspects are:

II. How are the operations a process performs represented?

That is, how is the program component of the process

state represented?

12. lIm] does a process keep track of which operation it is

to do next?

13. How does a process store intermediate results until

they can be used? That is, how is temporary storage

accomplished?

14. How does a process keep track of identifier-value

bindings?

IS. What is the universe of discourse? That is, what

classes of values are directly maninulable by

51 Sec 2.10

processes?

16. ~fuat operations can a process perform? That is, what

is the repertoire of the processor?

The specific questions related to external aspects are:

El. How can processes achieve shared memory?

E2. How can a process indicate the relative importance of

its current activity?

E3. How does a process know when to interrupt its current

activity in .order to respond to an interrupt event?

E4. EO\'l is moni toring for interrupt events accomplished?

lIO\'! often is it performed?

E5. How are the relative urgencies of interrupt events

represented?

E6. How can a process find information about a particular

interrupt event so that it may properly respond to it?

E7. Can a process accept more thana single request to

interrupt its current activity? If so, how?

E8. How does a process know the proper response to a

particular interrupt event?

E9. How can a process remember an interrupted activity so

that it may resume it after responding to an interrupt

event?

These questions should be kept in mind as the model is

presented in Chapters 3, 4 and 7. Answers are to be found in

the organization of the process state, the state transition

rule, and the virtual memory processes deal with.

52

CHAPTER 3

The Hodel In Overview

3.1 Introduction

The presentation of the model for process synthesis is

made in three parts. This chapter represents the first part.

It describes the organization of process states and the process

state transition rule. Chapter 4 is a more detailed discussion

of the model. It presents the virtual memory, the universe of

discourse and the treatment of process states as data objects.

The details of aspects of the model discussed in overview in

the present chapter are to be found in Chapter 4. Chapter 5

defines a simple programming language for using the model to

synthesize patterns of process behavior. Some of the notation

to be described in Chapter 5 can be used to advantage in the

present and the following chapter and, therefore, is introduced

informally whenever it is convenient to do so.

3.2 Organization of Process States

Process states are structured as collections of state

components. Some of the information that must be included in

process states was discussed in Chapter 2. The way I have

chosen to organize that information is, in part, a reflection

of the kinds of operations I expect will frequently be

performed on it.

53 Sec 3.2

The components of a process state are:

1. ~ram (prog):

The prog component is a collection of "instructions" which

defines the actions comprising the current activity of a

process. Each instruction defines a state transition, the

details of which may, in general, depend upon the values of

other state components. The state of a process undergoes

transition as the instructions of its prog component are

interpreted in the environment provided by its remaining state

components.

2. program £ounter (pc):

The pc indicates the instruction of the prog component to be

interpreted next. As a process evolves, its pc component, in

effect, defines a locus through its prog component.

3. level:

The activity of a process is interpretation of its prog

component. The level component is a measure of the importance

a process places on its current activity. Its value is an

integer between one and lmax where lmax is a fixed (for all

processes) integer greater than one; l<level<lmax, l<lmax. An

exact value for lmax is not given. However, none of the

examples appearing in later chapters requires it to be greater

than 7.

54 Sec 3.2

4. ~ctive flag (aflag):

The aflag indicates whether or not a process is currently

evolving.

5. stack:

The stack component is a pushdown store used for temporary

storage. Items enter and leave the stack at its "top".

6. program identifiers (prog-id):

The prog-id component is a record of identifier-value bindings.

A process uses its prog-id to interpret identifiers appearing

in its prog component.

7. process identifiers (proc-id):

Like prog-id, the proc-id component contains bindings for

identifiers. It represents a means by which a process can

tailor its state structure to match the requirements of

specific behavior patterns. (This point is discussed more

completely below.)

8. ~eserve ~rogram (~):

The rp component is a collection of instructions suitable to

serve as the prog component. It is to be interpreted whenever

the pc component is undefined. One way for the pc component to

become undefined is for a process to "complete" interpretation

of its prog component (see Sections 3.3 and 3.5).

9. handler ~rograms (hp):

The hp component is an ordered collection (1,2, ••• ,lmax) of

55 Sec 3.2

"programmed" responses for anticipated interrupt events. Each

component of hp is itself suitable to serve as the prog

component. Each is a collection of instructions defining a

sequence of actions to be taken whenever a particular interrupt

event occurs.

10. the ~ueues (~):

The q component is an ordered collection (1,2, ••• ,lmax) of

first-in-first-out (FIFO) queues. Items enter a queue at one

"end", called its back, and leave it at the other "end", called

its front (see Section 4.2). Each component of q can collect

requests for the process to interrupt its current activity.

11. the dump:

Whenever a process responds to an interrupt event the dump

component is used to remember the interrupted activity. The

dump is an ordered collection (1,2, ••• ,lmax) of "areas", each

capable of holding information about an interrupted activity

sufficient to allow it to be resumed at a later time.

12. the seized flag (sflag):

The sflag of a process indicates whether it has been "seized"

by another process. After a process has been seized it can

neither continue its current activity nor respond to interrupt

events until it is "released". A process can not directly set

its own sflag.

More detailed discussion of each state component is

deferred until Chapter 4. However, the existence of two

56 Sec 3.2

components, prog-id and proc-id, both of which record

identifier-value bindings requires further comment. Both are

included in the process state because they are used for quite

different purposes. The prog-id component is used by a process

to interpret identifiers which appear in its prog component.

Its use is discussed further in Section 3.5. The proc-id

component provides a means for a process to achieve variability

in its state structure. Identifiers bound in it function as

"extra" state components which enable a process to exhibit

specific behavior patterns. Reconsider the subroutine pattern

as described in Section 2.8. An important part of the state

for a process able to engage in subroutining is the part which

holds values for the state components to be saved at points of

call. That part of the state can be thought of as a special

"component" useful for the specific pattern of subroutining.

It is special because not all processes require it. The

proc-id component represents a means for realizing such

"special purpose" state components. The difference in the way

the prog-id and proc-id components are used is reflected by the

amount the identifier-value bindings they record can be

expected to change as a process evolves. The bindings recorded

by the prog-id component can be expected to be quite dynamic.

For example, in the case of subroutine behavior they would

change on each call and return. On calls, bindings for formal

parameters would be added to the prog-id and on returns,

removed from it. On the other hand, the identifier-value

bindings recorded by the proc-id component can be expected to

57 Sec 3.2

be more static. The proc-id component is used extensively in

the examples to be found in Chapters 5 and 6.

Certain groups of state components are frequently used in

combination. The prog and pc components form one such

combination called the control. The control components

identify the instruction which describes the next state

transition to be taken by a process as part of its current

activity. The combination called the status is made up of the

prog, pc, level, and aflag components. It defines the current

activity of a process. The stack, prog-id, proc-id and rp

components comprise the environment combination. In the

absence of interactions with other processes, the activity of a

process is the interpretation of its control components with

respect to its environment components.

3.3 The State Transition Rule

Each action in the sequence of actions making up the

activity of a process is a state transition. Each transition

occurs in accordance with the state transition rule. In

general, the states of several processes can undergo transition

concurrently. No commitment is made with respect to the

relative speeds with which such transitions occur.

The parenthesized numbers appearing in the following

discussion refer to parts of Figure 3.1, a flow diagram for the

state transition rule. That figure and the discussion to

no

Is there an integer j such that:

a. 1<j<leve1;
b. l~x(j implies ~(j) empty;
c. ~(j) not empty; and
d . .!!.E.(j) defined?

yes

~ .E...£ defined?
~

nn aflag on? VP",

~

yes no
.- E..E. defined? r--

@)

It

yes

interpret
"instruction"
specified by
Iprog and .E..£

store:

~

.E...£
level
af1ag

in dump(j)

set:

set:

~ "" E..E.
.E...£ .. "beginning"

of E..E. (j)

terminate
process

prog .. .!!.E.(j)
.E..£ .. "beginning"

o f .!!.E. (j)
level .. j
af1ag .. true

c
J

f
\

D
~

It

finish
I

E

.-/
F

~

Figure 3.1

The State Transition Rule

59 Sec 3.3

follow use ~(j) to denote the jth queue of the queues

component. Similarly, dump(j) and hp(j) are used for denoting

the jth components of the dump and handler p.rograms components.- ~.

Each state transition begins with a check to see whether

the process has been seized by another (1). If it has been

seized the state "transition" is completed \'1ith no further

action being taken.

If the process has not been seized, the state transition

continues with a check to see if the current activity should be

interrupted (2). It is to be interrupted only if both:

a. an interrupt event more important than the current

activity has occurred (2.a,b,c); and

b. a programmed response has been defined for such an

event (2.d). (The sense in vlhich "defined" is used is

explained in Section 4.3.)

If there is to be an interruption, the status components of the

process state are saved in the dump (3) and the state

transition is completed by initiating the response to the

interrupt event (4). If an event has occurred for which no

response has been defined, the event is ignored.

If no sufficiently important interrupt events have

occurred and if the process is active (5), the process

continues with its internal activity. If the pc component is

defined (6), interpretation of the operation specified by the

control components (9) completes the state transition. Section

60 Sec 3.3

3.5 discusses this part of the state transition rule in more

detail. If the pc component is undefined and if the rp

component is defined, the state transition is completed by

initiating interpretation of the rp component (8). Should both

pc and rp components be undefined the process is terminated

(10). If the process is inactive (5) the state "transition" is

completed with no changes having been made to the state.

The distinction made earlier between external and internal

aspects of process behavior is reflected by the six possible

routes through the state transition rule. Some paths, A and F,

represent possible reactions to the influence of other

processes. And others, n, C, D and E, describe how a process

accomplishes its activity independent of the influence of other

processes. As Section 2.4 notes, this distinction is not a

rigid one. The action taken as the control components are

interpreted (9) may involve other processes.

Assuming processes evolve independently of one another

except for occassional interactions, path E describes how the

majority of state transitions can be expected to occur. The

state transition that occurs when the operation specified by

the control components is interpreted (9) results in changes to

pc and, depending upon the particular operation, to various

other state cOMponents. Chapter 4 details operations processes

can perform.

61 Sec 3.3

Paths A and B describe the behavior, or more accurately

lack of it, exhibited by seized and inactive processes. Note

that there is a difference behleen a process which has been

seized and an inactive process which has no interrupt events to

respond to. Neither produces change to its process state.

However, an inactive process can respond should an important

interrupt event occur, while one which is seized can not. lJote

also that once a process becomes inactive it can become active

again only as the result of the actions of another process.

Similarly, a process which is seized can be "released" only by

another process. The role process seizure plays in the model

is discussed in Section 3.6.

Because the state transition rule repeatedly checks a

seized process to see whether it is seized (1) and an inactive

one to see whether it is inactive (5), it might appear at first

glance to waste a computing resource that could be used for

other useful computation. Recall, however, that each process

has a processor associated with it. rn1en a process is inactive

there is no other computation for its processor to perform.

Hence, there is nO waste. Similarly, when a process is seized,

another process is keeping it from proceeding. Again, there is

no computation its processor can perform and so, there is no

waste. On the other hand, an implementation of the model is

free to use techniques such as maintaining lists of inactive

and seized processes to help achieve the effects of steps (1)

and (5) of the state transition rule. An implementation that

62

repeatedly tests seized and inactive processes would be

intolerably wasteful.

Sec 3.3

The rp component and its role in state transition path C

requires comment. First, note that if ever the pc becomes

undefined while the rp component is being interpreted,

interpretation of rp is re-initiated. The possibility of

looping exists. For example, completion of interpretation of

rp has the effect of causing pc to become undefined (see

Section 3.5). As a result, the next state transition

re-initiates interpretation of rp. Such potential loops can be

avoided by including explicit terminate or state component

setting operations (see Section 4.6) in rp.

A second comment concerns the necessity of the rp

component: It is unnecessary. v~i thout it path C ~iJould

disappear from Figure 3.1 and a process would terminate when

its pc becomes undefined. T~e motivation for the rp component

is that a typical process, through the course of its existence,

can be exnected to use a number of different programs as its

prog component. An important aspect of such a process is the

action taken when it completes interpretation of the program

that is currently its prog component. 'l'hat aspect is made

explicit by the rp component. The rp can be regarded as the

response defined for a special, internally generated interrunt

event: completion of the prog component. In initiating the

response to that "event" (8) it is unnecessary to save the

status components; prog has been completed and the aflag and

63 Sec 3.3

level components are not changed. The subroutine pattern as

described in Section 2.8 is an example of a process behavior

pattern for which an important part is the action taken by a

process upon completion of its prog. When a process finishes

interpreting the prog corresponding to a subroutine it is to

perform the return. As another example, consider the behavior

patterns implied by Dijkstra's "parbegin" proposal (see

Sections 1.2.3 and 6.4). A process which corresponds to a

parallel path generated by a parbegin statement is no longer

needed after it completes interpretation of its path and may,

therefore, terminate. However, before it does so, it should

report its completion. The rp component can be used to

accomplish the subroutine return and the parbegin completion

report and subsequent termination. Detailed examples of how rp

can be used in synthesizinlJ behavior patterns are to be found

in Sections 5.3.3, 6,3, 6.4, 6.6 and 6.7.

3.4 External Aspects

The state components level, q, hp and dump determine

whether, when and how a process responds to interrupt events.

An interrupt event occurs when an item appears in one of

the queues of the q component of a process state. The presence

of such an item represents an interrupt request. The item

itself may be any member of the universe of discourse. The

particular item constituting an interrupt request represents

information about the interrupt event.

64 Sec 3.4

'~nitoring for the occurrence of interrupt events is

accomplished by checking the queues of the q component for the

presence of interrupt requests (2,c). Because it is part of

each state transition, the monitoring action is invisible to

the processes being monitored. That is, processes need not

concern themselves about it for it is automatically part of the

activity of every process.

The value of the level component of a process state is a

measure of the importance of the current activity of the

process: the smaller its value, the more important the

activity. The queue in which an interrupt request appears is a

measure of the importance of the request relative to the

current activity of the process. Hence, a request in ~(3) is

more important than one in ~(4) but is less important than the

current activity when the value of level is 20 Only an

interrupt request which is more important to a process than its

current activity can cause a response. That is, a request in

~(j) can cause a response only if j<level (2,a). Less

important interrupts requests are ignored until the value of

the level component is appropriately changed. The state

transition rule insures that when several important interrupt

requests are present the most important one is responded to

(2,b).

The way a process responds to interrupt events is defined

by the hp component of its state. The ~(j) component defines

its response to an interrupt request of importance j. Should

65 Sec 3.4

hp(j) be undefined, the process does not expect interrunt- - ~-

requests to appear in ~(j). In the absence of a defined

response interrupt events are ignored (2.d). This is

consistent ,vi th the prerequisi tes for process interactions

discussed in Section 2.4. Before meaningful interaction can

occur between two processes conventions for the interactions

must be established. If the interactions are to include

interrupt events, the conventions must include the queues in

which interrupt requests are to appear and the responses the

requests are to trigger. The meaning of an undefined hp(j) is

that the process has not agreed to respond to interrupt

requests appearing in q(j). Such a request remains in ~(j)

until it is explicitly removed. Its presence in ~(j) continues

to represent an interrupt request and is capable of triggering

a response, should one subsequently be defined.

l'Jhen an interrupt event for which a response is defined

occurs, the response is initiated in two steps. The first step

(3) stores the status components of the state, vlhich represent

the current activity of the process, in dump(j). The second

step (4) redefines the current activity by:

a. setting the control components so that interpretation

of ~(j) begins on the next state transition:

b. setting the aflag to indicate that the process is

active (recall that inactive processes can be

interrupted): and

c. setting the level component to j to insure that the

66 Sec 3.4

response can be interrupted only bv more important

interrupt requests.

After actions appropriate to the interrupt event are

taken, the interrupted activity can be resumed by restoring the

status components, prog, pc, level and aflag, stored in

dump(j). This can be accomplished using the operation

restore-dump (j)

It is possible for the response to an interruot event to change

the values of the status components saved in dump(j). Such-
behavior might be expected in response to an interrupt event

signalling the occurrence of an error situation (Chapter 7).

An interrupt request in ~(j) remains until it is

explicitly removed. If the interrupted activity is to continue

upon completion of the response to the request, the response

should remove the request from ~(j). If it does not, the

presence of the request could re-initiate the response,

resulting in a loop. Generally, when the interrunted activity

is to continue after the interrupt request is handled, hp(j)

will consist of the following sequence of actions:

actions in response

to the interrupt event

advance

restore-dump

}

(j) 1
remove request from ~(j)

restore the interrupted

activity

The advance and restore-dump operations could alternatively

67 Sec 3.4

appear in an appropriately specified rp component. In such a

case Vlhen the "actions in response to the interrupt event" were

completed, the resumption of the interruoted activity would

appear to be automatic.

The preceding paragraphs have introduced additional

notation:

a. operators are underscored;

b. semicolons separate operations appearing in a sequence;

c. parentheses separate operands from operators; and

d. when an operator takes more than a single operand,

commas are used to separate the operators.

Because processes can evolve concurrently the possibility

exists that several Might simultaneously attempt to interrupt

the same process at the same level. The arbiting property

assumed for memory elements (see Section 2.3) prevents the loss

of interrupt requests that could result from "races" bebveen

68 Sec 3.4

several processes trying to deposit items in the same queue.

It insures that whenever two or more processes simultaneously

attempt to deposit items in the same queue, the items are

deposited sequentially in an arbitrary order.

It is appropriate at this point to summarize the main

ideas presented in this section. This can be accomplished

nicely by reviewing how the q component of the process state is

used:

a. It provides shared memory required for interactions

between processes. A process can directly access its

own q component; others can access it indirectly

through the process designator of the process by using

the interrupt operation.

b. It holds requests for the process to interrupt its

current activity.

c. Because it is an ordered collection of queues, it can

define the relative importance of each interrupt

request it holds.

d. By holding requests associated with interrupt events it

remembers the occurrence of events until the process

can respond to them.

e. Because each queue is managed in a FIFO manner, the q

component remembers the order in which interrupt events

of the same relative importance occur.

3.5 Internal Aspects

69 Sec 3.5

This section discusses the part of the state transition

rule concerned with interpreting the prog component (i.e., part

9 of Figure 3.1). It is primarily concerned with how the prog,

pc, stack and prog-id components function together. In many

respects their behavior is similar to that of the SECD

evaluator described by Landin [Lan64]; the control components,

prog and pc, correspond roughly to Landin's control (C), the

stack to his stack (S), and the prog-id component to his

environment (E).

It is useful to visualize the prog component as a directed

graph with labeled arcs and to think of the pc component as

identifying a node vli thin that graph. Such a graph is referred

to as a p-graph (for £rog graph). The exact representation for

the prog and pc components is presented in Section 4.5.

A p-graph is a directed graph for which

1. each arc is labeled with a label from the set

next,true,false ; and

2. each node must have departing from it either:

a. no arcs, or

b. a single arc labeled next, or

c. two arcs, one labeled true, and one labeled

false.

'rhe nodes in a p-graph represent II instructions II for the

processor. The pc component indicates which node of the prog

70 Sec 3.5

p-qraph is to be interpreted. Arcs departing from p-graph node

n serve to specify the node to be interpreted following

interpretation of node n. As a process evolves its pc

component traces a path through its prog component by following

p-graph arcs. Figure 3.2 illustrates some p-qraphs.

nex

Figure 3.2

Examples of p-graphs. Nodes are represented by [:]'s.

P-graphs represent sequences of actions in postfix form.

Together the prog, pc and stack components function as a

postfix evaluator. The motivation for the choice of a "stack"

evaluator for the model is that a single state component, the

stack, can fulfil the temporary storage requirements of the

state transition rule. Stacks represent a very simple

mechanism for temporary storage. All operands come from the

top of the stack. And, the values produced by all operations

are pushed onto it. Their last in-first out property makes

71 Sec 3.5

stacks well matched to the temporary storage requirements of

nested expression evaluation.

Figure 3.3a expands part 9 of the state transition rule

displayed in Figure 3.1. It describes in more detail hO\v

interpretation of the control components is accomplished. The

parenthesized numbers, (9.1) throug~ (9.8), appearing in the

following discussion refer to parts of Figure 3.3a.

Conceptually, there are two parts to the interpretation of

a p-graph node:

1. the state transition specified by the node is made

(9.1); and

2. the pc component is set to designate the node to be

interpreted on the next state transition (9.2-9.8).

To explain the state transitions that result from

interpreting p-graph nodes (9.1) it is useful to partition the

nodes into three classes:

1. prog-items;

2. identifiers;

3. other members of the universe of discourse (n)

(n includes prog-items and identifiers).

Prog-items represent operators. Several prog-items, among them

restore-dump, advance, and interrupt, have already been

introduced in Section 3.4. Identifiers and other members of n
appearing as p-graph nodes represent operands. When a

prog-item is to be interpreted, the operation denoted by it is

72 Sec 3.5

set .E.£ to
undef

interpret
"instruction"
specified by

~ and~ ®

no

set .E..£ to
node f

@

no

2

top item in
stack = true?

which situation of
3Figure 3.3b applies?I"----"----,

@

set .E.£ to
node t

yes

1

did interpretation
of the node include
set tin g .E.£? If.

interpret p-graph
node specified
by .E..£

set .E..£ to
node n AnI.

~

es

El
~

E2

'-....
E4

pop top ./
i tern from 1"'0--

stack

E5

.-/

(a)

pro g ----.J"1'

--~ nodpc

Situation 2

prog --oW'

pc

prog -~..r

pc

(b)

Figure 3.3

Part 9 of the state transition rule (See Figure 3.1)

73 Sec 3.5

performed. The operands, if any, required by the prog-item are

taken from the top of the stack component and the results, if

any, produced by the operation are pushed back onto the stack.

If the p-graph node to be interpreted is an identifier, the

value to which the identifier is bound by the process prog-id

is pushed onto the stack. Finally, if the node is any member

of.!l other than an identifier or a prog-i tern, the action taken

is to push its value onto the stack.

lnlen the action specified by a prog-item includes setting

the pc component no further action is taken and the state

transi tion is completed (9.2). (This case includes degenerate

si tuations in vlhich the value to vlhich the pc is set is its

current value.) Otherwise, pc must be set to complete the

state transition. Hhat pc is set to depends upon the arcs

departing from the p-graph node. If the node has a "next" arc

which terminates on node n (situation I of Figure 3.3b), pc is

set to node n (9.4). If it has "true" and "false" arcs

terminating on nodes t and f respectively (situation 2), then

the new pc setting depends upon the top item of the stack. If

it is the value true, pc is set to t (9.6), othenlise pc is set

to f (9.7); in either case, the top item is popped from the

stack. A p-graph node with no departing arcs (situation 3)

represents a "terminal" node of the p-graph. After it is

interpreted, the pc component is set to the value undef (9.9)

to indicate that the prog has been completely interpreted.

(For a discussion of undef see Section 4.3.) In such a case,

74 Sec 3.5

the next state transition either initiates interpretation of

the rp component, if it is defined, or, if it is not,

terminates the process (see Figure 3.1).

At this point an example is in order. Consider a process

whose prog and pc components are as indicated in Figure 3.4.

p~og

pc

node n

Figure 3.4

The prog and pc state components for a process (see text).

Assuming that its current activity is not interrupted, its next

two state transitions are:

transition 1 - path E2

(refer to Figures 3.1 and 3.3a)

the integer 6 is pushed onto the stack

component;

the pc component is advanced to node n

transition 2 - path E1

the prog, pc, level and af1ag components

are set from the values saved in the 6th

component of the dump;

75 Sec 3.5

the top item (the integer 6) is popped from

the stack component.

As noted earlier both in this section and in Section 2.9,

identifiers can appear in the prog component. The prog-id

component is used to interpret such identifiers. It is a

record of identifier-value bindings. Note that there is a

difference between an identifier and the value to which it is

bound. Conventional programming practice dictates that an

identifier appearing in a program means the value to which it

is bound. That practice is followed in the model. When the

p-graph node to be interpreted is an identifier, the identifier

is interpreted to be the value associated with it by the

prog-id component. The following actions are taken (as part of

(9.1)) to interpret such a node (see Figure 3.5a):

a. the prog-id component is searched for a binding for the

identifier;

b. if a binding for the identifier is found, the value to

which it is bound is pushed onto the stack; otherwise,

the value undef is pushed onto the stack, to indicate

that the identifier is currently unbound.

There is occassion to deal with identifiers as objects

themselves (see Section 4.4). The prog-item quote can be used

in such a case to prevent an identifier from being interpreted

with respect to the prog-id component. When the p-graph node

bp.ing interpreted is quote, the action taken is to push the

"next" p-graph node item onto the stack and advance the pc two

prog

pc

76

transition
====>path E2

prog

pc

Sec 3.5

stack

prog-id

t

(a)

stack

prog-id

3
0<.

···
't

prog

pc

transition,

path El

prog

pc

stack

pro g- i~---;~

(b)

Figure 3.5

stack

prog-_~

x
~

···..,.

a. Interpretation of the identifier x.

b. Interpretation of quote (x).

77 Sec 3.5

nodes. Fiqure 3.5 compares the interpretation of an identifier

vii th that of a "quoted" identifier. A complimentary prog-i tern

binding interprets a specified identifier with respect to a

specified prog-id to produce the value to which the identifier

is bound in that prog-id (see Section 4.5).

3.6 Manipulating the Process State

A process has the ability to extract and to set both the

values of its own state components and those of other

processes. Each operation a process performs is accomplished

by making changes to its state. However, a useful intuitive

distinction can be made betv'1een "component setting" operations

and "ordinary" operations. The state transition required to

accomplish a component settinq operation is explicit in the

operation. The state components to be changed and the values

they are to be changed to are explicitly stated as part of the

operation itself. On the other hand, ordinary operations, such

as arithmetic or structure manipulating operations, represent

more implicit changes to the state in the sense that they do

not detail the state changes required to accomplish them.

Ordinary operations are largely independent of the process

state structure, whereas component setting operations are not.

State component setting operations are useful for making

extraordinary changes to the activity being performed by a

process. The components set determine the degree of change:

setting pc is equivalent to a local goto (i.e., within the same

78 Sec 3.6

prog}; setting level changes the class of interrupt requests

to which a process responds; setting parts of hp redefines

responses interrupt requests receive; setting prog-id

redefines identifier-value bindings and may have a significant

effect upon the behavior of a process. When a process creates

another it can initialize the state of the new process using

state component setting operations.

Whenever a process manipulates its own state it is engaged

in potentially tricky business because the program and data

that describe the manipulations are part of the state being

manipulated. Consider, for example, a process attempting to

make a "copy" of its stack component. To do so it could obtain

a previously unused stack (see Section 4.2) and begin pushing

items held in its stack component onto it. The potential

confusion arises from the fact that all onerations involved in

making the copy take their operands from the stack being

copied. ~n example in Section 5.3.1 shows how such a copy can

be made. \fuenever a group of components to be set includes the

prog and pc, care must be taken to insure that prog and pc are

the last set, since they describe the setting operations. The

situation is less confusing when one process sets components of

another's state because the program and data describing the

operations are not part of the state whose components are being

changed.

Because a process can set the state components of another,

the situation could occur that several processes simultaneously

79 Sec 3.6

attempt to change components of the same process state. For

example, process PI might attempt to set components of process

P2's state while P2 itself is changing them as part of its

internal activity. Or, PI and a third orocess P3 might both

attempt to set components of P2's state. In either case P2's

state could be left in an inconsistent condition.

The model insures that at any time only a single process

can be engaged in setting the state components of orocess P2.

That process may be P2 itself or it may be another process. A

prerequisite for another process PI to set components of P2's

state is that PI have P2 "seized". Process seizure is a kind

of locking operation. No other process can seize P2 while PI

has it seized. Consequently while it is seized by PI no

process other than PI can change the components of P2. P2 is

unable to because it is seized (part I of Figure 3.1) and

others, because to do so they must first seize P2. Because the

sflag is tested only once as part of each state transition and

because that test occurs before any changes to the state are

initiated (see Figure 3.1), a process can not be stopped

"mid-way" through a state transition as the result of being

seized by another process. In particular, once P2 initiates an

operation to set its own components the operation is guaranteed

to be completed.

The prog-item t-seize (for test and seize) is used to

seize a process. It is a predicate with a side effect. Ivhen

t-seize (pd)

80 Sec 3.6

is interpreted an attempt is made to seize the process

designated by pd. If that process is not already seized, the

attempt succeeds and the value of the predicate is true:

othenlise the attempt fails and the value of the predicate is

false. The t-seize operation is indivisible in the sense that

no other process can seize the process between the test and the

seizure. Furthermore, if t-seize succeeds the sflag of the

designated process is set immediately but the value true is not

"returned" to the seizing process until the designated process

completes its current state transition. This guarantees that

the seizing process can not set the state of the seized process

while the seized process is completing a state transition. A

process can "release" processes it has seized. Interpretation

of

release (pd)

causes the process designated by pd to be released (i.e., to be

no longer seized).

81

CHAPTER 4

The ~lodel In Detail

4.1 Introduction

The description of the state transition rule started in

Section 3.3 and continued in Sections 3.4 and 3.5 is complete

except for the part that reads

interpret the p-graph node specified by pc

(i.e., part 9.1 of Figure 3.3a). To complete the description

this chapter discusses each prog-item and the state transition

that results from its interpretation. In the course of doing

so it defines the virtual memory for the model and its universe

of discourse. In addition, it presents the way in which the

Model treats state components as data objects. A summary of

all prog-iteMs May be found in Appendix 1 which is included to

serve as a reference source.

This chapter also discusses the extent to which processes

are isolated from one another and ways in which interactions

between them can occur. 'rhat discussion reveals a weakness in

the model, to be corrected in Chapter 7, concerned with

controlling capabilities of processes. The chapter ends with a

summary of the process representation method in which the

questions stated in Section 2.10 are re-examined.

82 Sec 4.1

Before proceeding, it is appropriate to introduce some

conventions to be used in this chapter. As Section 3.5 notes,

prog-items take their operands from the top of the stack

component. The expression

pi (rl, ••• , rn)

is used to denote application of prog-item pi to operands

rl, ••• ,rn. The p-graph fragment corresponding to that

expression is such that when ~ is interpreted the top item in

the stack component is the value of rl, the second item the

value of r2, etc. For example, the p-graph fragment

corresponding to

interrupt (pd, n, v)

is displayed in Figure 4.1. The phrase

the value of E is V

where E is an expression is frequently used in the sequel. Its

meaning is

after the p-graph fragment corresponding to E is

interpreted the top item in the stack is V.

All prog-items taking operands remove those operands from the

stack. Unless it is explicitly noted that a particular

prog-item produces a value, the only effect its interpretation

has on the stack component is to remove its operands (if any)

from the top of it. For example, the effect interpretation of

interrupt has on the process stack is to pop the top three

iterrls from it.

83

}fragment to
evaluate v

} fragment to
evaluate n

J
fragment to
evaluate pd

Sec 4.2

Figure 4.1

The p-graph fragment corresponding to

interrupt (pd~ n~ v)

4.2 Virtual ~'lemory for the Hodel

The virtual memory provides three kinds of memory

elements:

1. stacks;

2. queues; and

3. cells.

Stacks and queues have been discussed in connection with

process states and the state transition rule. Although they

behave in different ways, the three kinds of memory elements

have four properties in common:

1. storage property: memory elements are used by

processes to hold values. A memory element can hold

84 Sec 4.2

any member of the universe of discourse.

2. retrieval property: processes can retrieve values

stored in memory elements; retrieval has no effect on

the values stored in a memory element.

3. allocation property: a process can request and obtain

use of a "new" memory element guaranteed inaccessible

to other processes (within the constraint that memory

is finite); until it chooses to "share" them with

other processes, a process has "exclusive" use of

memory elements it allocates.

4. arbiting property: attempts by several processes to

simultaneously access the same memory element (for

storage or retrieval) result in sequential access.

HO\'l memory elements can be guaranteed inaccessible to certain

processes is discussed in Section 4.7.

A process can use stacks in addition to the one which is

the stack component of its state. The values held in a stack

are kept in a linear list. The storage operations make

insertions to and deletions from one end of the list, called

the top of the stack. Each stack has associated with it a

stack designator which uniquely identifies it.

Like a stack, a queue holds the values stored in it in a

linear list. As with stacks, the storage operations are

insertions to and deletions from that list. However, for

queues insertions occur at one end of the list, called the back

of the queue, and deletions occur at the other end, called the

85 Sec 4.2

front of the queue. Associated with each queue is a queue

designator which uniquely identifies it.

A cell, unlike a queue or stack, can hold only a single

value. Each cell has associated with it a cell clesignator

which uniquely identifies it. The terms I-value and r-value,

coined by Strachey [Str67], are used in the sequel when

referring to cells. The r-value of a cell is the value held by

it; the I-value of a cell is its cell designator.

Cells, stacks and queues are collectively referred to as

nemory elements and cell designators, stack designators and

queue designators, as memory designators. Note that a

distinction between memory elements, memory designators and the

values held by memory elements is made by the virtual memory.

The prog-items new-cell, new-stack and new-queue are the

allocation operations. They are used to request the use of new

memory elements. The value of

new-cell (value)

is the cell designator of a new cell whose r-value is

initialized to value. The value of

new-stack

is the stack designator of a new stack and that of

new-queue

the queue designator of a new queue. New stacks and queues are

initially empty.

86 Sec 4.2

The storage operation for cells is store;

store (cd, value)

sets the r-value of the cell designated by cd to value. The

insertion and deletion operations for stacks are push and pop

respectively. Interpretation of

push (sd, value)

causes value to be inserted at the top of the stack designated

by sd, and that of

~ (sd)

has the effect of removing a single value from the top of the

designated stack. For queues the storage operations are

enqueue (insertion) and advance (removal). ~vhen

enqueue (qd, value)

is interpreted, value is inserted at the back of the queue

designated by qd. The value at the front of the designated

queue is removed by

auvance (qd)

Stacks and queues have finite capacity. Stacks can hold smax

items and queues qrnax. An attempt to make an insertion to a

full stack or queue results in an error situation (see Section

7.6).

The retrieval operations for memory elements are rval,

length, and index. The r-value of the cell designated by cd is

rval (cd)

The value of

length (sd)

87 Sec 4.2

is the number of items currently held in the stack designated

by sd. Similarly, the number of items currently held in the

queue designated by qd is

length (qd)

The prog-item index is used to retrieve values held in stacks

and queues. The nth item from the top of the stack designated

by sd is

index (sd, n)

(bv convention, the "first item from the top" of a stack is the

top item). Similarly

index (qd, n)

is the ntll value from the front of the designated queue.

Should less than n items be in the stack or queue, the value

produced by index is undef.

With respect to storage operations queues behave in a

strictly FIFO manner. Similarly, stacks exhibit strictly LIFO

behavior with respect to storage operations. ~ote, however,

that the retrieval operation index permits the value of any

item in a stack or queue to be accessed. This property of

stacks and queues with resnect to the retrieval operation

represents a departure from the ususal restriction that only

the item at the top of a stack or the front of a queue be

accessible.

An additional operation for cells provides a basis for

building locking mechanisms. It is t-set (for test and set), a

predicate with a side effect. WIlen the predicate

88

t-set (cd)

Sec 4.2

is interpreted the r-value of the cell designated by cd is

examined. If it is 0, it is set to I and the value of the

predicate is true; otherwise it is left unchanged and the

value of the predicate is false. The t-set operation is

"indivisible" in the sense that no other process can set the

r-value of the cell between the test and the set. An example

in Section 5.3.2 uses t-set to build a locking mechanism.

It is frequently useful to be able to display memory

elements graphically. The following conventions are used to

graphically represent memory elements and memory designators:

a. memory designators are drawn as arcs pointing to memory

elements; arcs that point to the same memory element

represent the same memory designator;

b. cells are drawn

Ir-val ue

c. stacks are drawn

value 1top··
value

d. queues are drawn

value 1front···
value

89 Sec 4.2

Consider the queue designated x shown in Figure 4.2a. It

holds the values "', ~ and 1.

identities:

length (x) = 3

index (x, 1) = 0<.

index (x, 3) = f

index (x, 4) = undef

For that queue the following are

enqueue(x, ~)

x

lto p
x

0(

~

"t >
advance(x)

(a)

t

(b)

x

(3

t
) S

(c)

Figure 4.2

The effect of the queue storage operations advance
and enqueue.

Figures 4.2b and 4.2c show the queue after interpretation of

advance (x)

and then of

enqueue (x, l»

4.3 The Universe of Discourse

90 Sec 4.3

The universe of discourse for processes,fl, is the set of

objects processes can deal with. !l is partitioned into classes

called types. Different types have different properties.

Practically speaking, one type is distinguished from another by

the operations that can be performed on it. For example, the

operation t-set can be performed on I-values but not on

integers; I-values and integers are different types.

Section 2.8 develops an operational definition fora which

can be paraphrased

anything that can appear as an item in the stack

component is in fl.

Together with the discussion of previous sections this

definition implies thatn includes

process designators (Section 3.4)

cell designators (I-values) (Section 4.2)

stack designators (Section 4.2)

queue designators (Section 4.2)

identifiers (Section 3.5)

prog-items (Section 3.5)

integers (Section 3.4)

truthvalues (Section 3.5)

undef (Section 3.5)

In additionn includes two kinds of structure designators:

designators for rows and for structs (to be discussed in

Section 4.4). Hote that designators for memory elements,

91 Sec 4.3

rather than memory elements themselves, are members ofll.

The universe of discourse for processes is such that given

a value it is possible to determine its type. Interpretation

ofa prog-item includes checking its operands for type. If an

operand is not of the proper type an error situation results

(see Section 7.6). Such behavior is commonly called dynamic

~ checking.

There are explicit type checking predicates for each type.

If the operand of a type checking predicate is of the type

being tested, the predicate produces the value true;

otherwise, it produces the value false. The type checking

predicates are: is-proc, is-lval, is-stack, is-queue,

is-prog-itern, is-ident, is-int, is-truthval, is-undef, is-row,

and is-struct.

The prog-item ~ is the equality predicate; it tests any

two members ofn for equality. The value of

~ (vl, v2)

is true only if the value of vl is equal to the value of v2.

There are two operations of interest for objects of type

prog-item: quote and do. As it does for identifiers, quote

prevents prog-items from being interpreted (see Section 3.5).

When do is interpreted the top item of the stack is expected to

be a prog-itern. The state transition that results is the same

as would result if the prog-item were popped from the stack and

used in place of do as the prog-item being interpreted.

92 Sec 4.3

The usual operations are included for integers and

truthvalues. The operations for integers are plus, minus,

times and divide; the predicates are greater than (gr), less

than (~), greater than or equal (ge), less than or equal (le)

and the general equality predicate (~). The truthvalues are

denoted true and false. The operations for truthvalues are

and, or and not.

The value undef is special in two respects:

1. all type checking predicates produce true when applied

to it; and

2. with the exception of predicates, each value-producing

operation produces undef if any of its operands is

undef. (e.g., 2 + undef = undef, but

~(2, undef) = false)

Although it "propogates" in the same way as an undefined value

would (i.e., 2 + undef = undef), undef is a specific, testable

value (there is a predicate is-undef) and therefore, is not,

strictly speaking, undefined. 'l'he pc, rp and hp (i) components

are said to be undefined (see Figure 3.1) whenever their values

are undef.

Note that a number of types usually found in programming

languages, such as reals and strings, are not included in 11

Additional types such as these could certainly be added to n

with little more than a perturbation to the model resulting. I

would consider as faithful an implementation of the model that

includes, in addition to the prog-items described in this

93 Sec 4.3

dissertation, prog-items whose only effect is upon the top part

of the process stack. Thus, an implementer is free to include

strings and string operators in his implementation if he

chooses. He is free, also, to introduce additional operators

for existing types.

4.4 Structures

A structure is an organized collection of values. Each

structure has a structure designator associated with it when it

is constructed. A particular member or comnonent of the

collection can be accessed by "applying" a selector to the

structure designator. Any member of the universe of discourse,

including a structure designator, can be a component of a

structure.

Processes can <leal wi tIl two kinds of structures: rOVlS and

structs. Rows are sequential structures for which integers are

used to select components. For structs, identifiers are used

as selectors.

homogeneous.

Neither structs nor rows are required to be

The null structure, nil, is the empty collection of values

and is considered to be both a row and a struct. Thus

is-row (nil) = is-struct (nil) = true.-- -
The predicate for the null structure is is-nil.

The row designated by row designator rd has

length (rd)

94 Sec 4.4

components. The integers 1,2, ••• ,length(rd) serve as selectors

for it. Providing that l(n(length(rd), the value of the

expression

index (rd, n)

is the nth component of the row designated by rdi otherwise it

is undef.

The prog-item row is a constructor for rows. The value of

~ (n, vI, ••• , vn)

is the row designator for a row having n components, vI, ••• ,

vn.

Recall that "unquoted" identifiers appearing as p-graph

nodes are interpreted with respect to the prog-id component.

Identifiers to be used as selectors for structs should be

quoted to prevent their interpretation with respect to the

prog-id. In the discussion of structs that follows id-exp,

id-expl, ••• , id-expn are used to denote identifier-valued

expressions and id, idl, ••• , idn to denote the values of those

expressions.

The value of

selectors (sd)

is the row designator for a row whose components are the

selectors for the struct designated by sd. No commitment

concerning the order in which the selectors for the struct

appear in the row of selectors is made. Successive

applications of selectors to the same struct designator are

95 Sec 4.4

Structs can be constructed using the prog-item struct.

The value of

struct (n, id-expl, vl, ••• , id-expn, vn)

is the struct designator for a struct having the n components

vl, ••• , vn, selected respectively by the selectors idl, ••• ,

idn. ~vhen the prog-i tern struct is interpreted, the top item in

the process stack, which is the value of n, indicates the

number of items to be taken from the top of the stack to build

the struct.

The following notational conventions permit the quote

operation to be omitted when referring to selectors, making

descriptions of struct manipulations some\"hat more readable:

1. sd.id is equivalent to select (sd, quote(id));

2. [idl:vl, ••• , idn:vn] is equivalent to

struct (n, quote (idl), vl, ••• , quote (idn), vn)

There are analogous convention~ for rows:

1. rd[n] is equivalent to index(rd, n);

2. [vl, ••• ,vn] is equivalent to

96

rOvl (n , vI, ••• ,vn)

Sec 4.4

Rows and structs have identity independent of their

structure. That is, the value of

~ (sdl, sd2)

where sdl and sd2 are structure designators, is true only if

sdl is the same structure designator as sd2. Thus, for example

~ (~ (2, 1, 2), ~ (2, 1, 2» = false

because the operands of ~ designate different, although

structurally identical, rows.

As with memory objects it is frequently useful to

graphically display structures and structure designators. Rows

and structs are displayed using the following conventions:

a. nil is dravln

b. The row II. vI, ••• , vn] is drawn

vI vn

c. The struct [idl:vl, ••• ,idn:vn] is drawn

vI vn

97 Sec 4.4

d. Structure designators are drawn as arcs pointing to

structure circles. Arcs that point to the same circle

represent the same structure designator.

The rOlil

[4, nil, new-cell(new-cell(6))]

and the struct

[a:[undef, 7j, b:5, c:nmv-cell(new-stack)]

are displayed in Figure 4.3. These two expressions are

equivalent to

row (3, 4, nil, new-cell(new-cell(6)))

and

struct (3, quote (a) , ~(2, undef, 7),

quote (b) , 5,

quote (c) , new-cell (new-stack)

respectively.

There are two additional constructors for structures.

Each produces from a given structure a new one identical in all

respects to the original with the single exception that the new

structure has one component more than the original. The value

of

aug-row (rd, v)

is the row designator td, such that

a. length (td) = 1 + length (rd)

b.
index (td,n) = {V

index (rd,n)

for n = length(td)

otherwise

(a)

undef

98

7

(b)

Sec 4.4

top

r

Figure 4.3

A row and a struct produced by the constructors row

and struct, respectively (see text).

The value of

aug-struct (sd, id-expl, v)

is a struct designator td such that

a.

b.

selectors (td) = aug-row (selectors (sd) , id-expl)

f
v if id = idl

select (td,id-exp) =
select (sd,id-exp) otherwise

Figure 4.4 illustrates structures produced by aug-row and

aug-struct. Note that x[3] and Xl [3] "share" the same I-value.

Any operation which has the effect of changing rval(x[3]) also

has the effect of changing rval(x I [3]) • Sharing is discussed

further in Section 5.3.3. Operations complimentary to aug-row

and aug-struct for constructing from a given structure another

x x I

99 Sec 4.4

aug-row (x, [6, new-cell(false)])

(a)

6

aug-struct (y, quote(price), 72)

12 6

yl

(b)

12 6 72

Figure 4.4

Examples of structures produced by the constructors
aug-row and aug-struct. Note that x[3] and Xl [3] "share"
the same I-value.

100 Sec 4.4

one with one fewer component can be expressed in terms of

length, index, aug-row, selectors, select and aug-struct. As

remarked in Section 4.3, an implementor is free to build

prog-items for such operations into his implementation.

4.5 State Components as Hembers of .n

There are operations for directly manipulating components

of process states. Hence, by the operational definition given

in Section 4.3, state components are mem.'Jers of n. .

prog, rp, hp:

The prog, rp and each of the lmax components of hp are

p-graphs. There are two ways the model could deal with

p-graphs as values:

1. a new type, p-graph, could be introduced and included

as part of 11; or

2. an existing type could be used to represent p-graphs.

The second approach is used for the following reasons:

1. it allows the pc component to be particularly simple;

2. it requires no additions to A;

3. it appears to be no more complex than the first

approach.

Rmvs are used to represent p-graphs. The components of a

row representing a p-graph are designators for structs which

correspond to the nodes of the p-graph. Each struct is of the

form:

101

[item:--, next:-]

Sec 4.5

The integer selector for the struct corresponding to a specific

p-graph node is referred to as the index of the node.

Three cases must be considered:

1. The p-graph node has no departing arcs:

I ITEM

Recall that ITEH can be a prog-item, an identifier or

any other member of n. 'l'he struct corresponding to

such a p-graph node is:

[i tern: ITEH, next: undef]

2. The p-graph node has a single departing arc:

next

node n

The corresponding struct is:

[i tern: ITE~,11 next: INDEX_n]

where INDEX n is the index of node n.

3. The p-graph node has two departing arcs:

node t node f

102 Sec 4.5

row

Such a node is represented by a struct of the form

[item:ITEH, next:[nmEX_t, INDEX_f]]

\vhere INDEX t and IUDEX f are respectively the indices

of node t and node f.

The p-graph shown in Figure 4.5 can be represented by the

[[item:x, next: 2],

[i tern: length, next: 3],

[i tern: 10, next: 4],

[item:~, next:[S, 8]],

[i tern: 10, next:6],

[ite:n:x, next:?],

[item:index, next:undef],

[item:z, next: 9],

[item:x g next: 10],

[item:push, next: 1]]-"--
Note that there are a number of other rmvs which also represent

the structure of that p-grap~. For example, a row whose third,

fourth and fifth components are respectively

[item:10, next:SD

[item:10, next:6D

[item:s, next:[4, an]

and which otherwise is identical to the one above also

represents it.

pc:

The value of the pc component is an inteqer which is to be

103

Figure 4.5

A p-graph fragment.

next

Sec 4.5

interpreted as the index of a node in the prog p-graph. The

instruction

prog[pc].item

describes the next state transition to be taken by a process as

part of its current activity. By convention, 1 is the index

for the node for a p-graph to be interpreted first. Therefore,

the value of pc is set to 1 by parts 4 and 8 of the state

transition rule as described in Figure 3.1.

level, aflag:

The value of the level component is an integer j such that

l<j<lmax. The remaining status component, aflag, is a- -
truthvalue.

104 Sec 4.5

stack:

The stack component is a stack designator. The prog-item

~ can be used to explicitly pop items from the stack

component. When it is interpreted a single item is popped from

the stack component.

prog-id:

The prog-id component is a struct. It is either nil or it

is a struct of the form

[top:struct, rest:p]

where p is itself a struct suitable for use as a prog-id

component. The individual structs makinq up the prog-id

component are called id-layers. Hence, the prog-id component

is either nil or a list of id-layers. Two structs which can be

used for the prog-id components of process states are shown in

Figure 4.6.

'i'Jhen a process has a prog-id component that is nil none of

the identifiers appearing in its prog component is bound.

Each id-layer describes a set of identifier-value

bindings. The identifier x is bound in id-layer L if x is a

selector for L; in such a case, the value to which x is bound

is L.x. For the prog-id shown in Figure 4.5b, identifiers x, y

and z are bound in the top layer, and identifiers a, x, and q,

in the next id=layer. \'lhen a p-graph node that is an

identifier is interpreted, the id-layers of the prog-id

component are searched in order (i.e., first prog-id.top, then

105 Sec 4.5

(a)

undef 9

(b)

14 true

Figure 4.6

Structs suitable for use as prog-id state components.

prog-id.top.rest, etc.) until either the identifier is found to

be bound in an id-layer, in which case the value to which it is

bound is pushed onto the stack component, or the id-layers are

exhausted, in which case undef is pushed onto the stack.

Identifiers can be bound to any member of!l (including

undef). The prog-items bind and unbind create and delete

identifier-value bindings. The effect of

bind (id-exp, value)

is to bind id (the value of id-exp) to value in the top

id-layer (prog-id.top) of the prog-id component. Figure 4.7

illustrates the effect interpretation of

bind (quote(w), 2)

has upon the prog-id component illustrated in Figure 4.6b.

undef

106

14

bind (quote (w), 2)

Sec 4.5

undef 9 14 true

Figure 4.7

\\7hen

107

unbind (id-exp)

Sec 4.5

is interpreted the selector id is removed from the top id-layer

of the prog-id component, thereby "unbinding" id in that

id-layer. Identifier-value bindings can also be changed by

directly setting the prog-id component (see Section 4.6). The

value of the expression

binding (id-exp, P id)- -
where p_id is the designator for a struct suitable for use as a

prog-id and the value of id-exp is the identifier id, is the

value to which id is bound in p_id.

proc-id:

The remaining environment component, proc-id, is a struct.

The selectors of the struct define the identifiers that are

bound by the proc-id.

queues, sflag:

Each component of the queues component is a queue

designator. The value of the sflag component is either nil or

a process designator. When its value is a process designator,

the sflag of a process indicates that the process is currently

seized by the process designated. Therefore, the test

specified by part 1 of Figure 3.1 could be accomplished by

either

is-nil (sflag) or is-proc (sflag)

108 Sec 4.5

dump:

Each component of the dump component is the designator for

a struct of the form

capable of holding the status components of an interrupted

activity. Because the struct is composed of I-values, the

response to an interrupt event can, when appropriate, change

the status components of the interrupted activity before

allowing it to continue.

4.6 Process Creation and State Components as Operands

The operation new-proc creates a new process. The value

of

new-proc

is the process designator of a newly created process. When a

process comes into existence its state components have the

values:

prog = undef

pc = 1

level = Imax

aflag = false

109 Sec 4.6

stack = designator of a new stack

prog-id = nil

proc-id = nil

rp = undef

hp(l), ••• ,hp(lmax) all = unuef

q(l), ••• ,q(lmax) each = designator of a new queue

dump(l), ••• ,dump(lmax) each = struct of form

[prog:new-cell (undef) ,

pc:new-cell(undef),

aflag:new-cell(undef),

level:new-cell(undef)]

sflag = designator of creating process

Note that a process comes into existence seized by its creator.

The creating process can use the component setting operations

to initialize the states of processes it creates.

In the model, one process can not explicitly terminate

(destroy) another. The only way a process can cease to exist

is by self destruction (see Section 2.6). If its rp component

is undefined when it completes interpretation of its prog

component, a process terminates (see part 10 of Figure 3.1).

To explicitly cause its termination a process can use the

prog-item terminate.

~IDst state component setting operations require the

process designator of the process whose components are to be

set as an operand. That designator must be either that of the

110 Sec 4.6

process performing the operation or that of one it has seized.

A process can use the proq-item proc to obtain its own

designator.

State components can be set singly or in combination.

Interpretation of

set-prog (pd, rd)

sets the prog component of the process designated by pd to the

row designated by rd. The prog-items set-pc, set-level,

set-aflag, set-stack, set-prog-id, set-proc-id and set-rp work

in an analogous manner. The components of the queues, dump and

handler programs components are set individually. The efl'ct

of

set-q (pd, n, qd)

is to change the queue which accents interrupt requests of

importance n for process pd to the queue designated by qd o

When

set-hp (pd, n, rd)

is interpreted the nth component of the hp component for the

designated process is set to the row designated by rd. The

set-dump operation works in an analogous manner.

The operations for setting combinations of state

components are set-control, set-status and set-env which

respectively set the control, status and environment component

combinations (see Section 3.2). The effect of

set-status (pd, sd)

111

where sd is the designator for a struct of the form

Sec 4.6

rd = row designator
ill, n = integers
tv truthvalue

is to set the prog, pc, level and af1ag components of the

designated process to rd, m, n and tv, respectively. The

prog-items set-control and set-env work in an analogous way.

Note that

restore-dump (j)

is equivalent to

set-status (proc, dump(j))

A process can simultaneously set its own level and af1ag

components using the prog-item set-level-inactive. When a

process performs

set-level-inactive (n)

its level component is set to n and its aflag to false. This

operation is useful in situations which require a process to

wait until it receives and handles a particular interrupt

request expected to appear on a higher level (for examples see

Sections 5.3.4 and 6.4). It enables the process to'increase

its level and set itself inactive to await the interrupt event.

In such situations the sequence

set-level (proc, n);

set-af1ag (proc, false)

112 Sec 4.6

is inadequate because the anticipated interrupt event might

have occurred before the set-level operation or it might occur

after the set-level but before the set-aflag. Both cases

require the process to respond to the interrupt request before

it can set its aflag. As a result, upon completion of the

response, the process would set its aflag to await the request.

By setting its aflag and level simultaneously, a process

insures that it does not respond to the interrupt event before

becoming inactive.

As is the case with setting components, a process can

access both the values of its own components and those of other

processes. The operations for accessing the values of state

components are analogous to those for setting them with the

exception that they produce values rather than having effects.

To access components of another process, a process must first

have the other process seized.

The value of

prog-of (pd)

is the row designator of the prog component for the process

designated by pd. The prog-items pc-of, level-of, aflag-of,

stack-of, proc-id-of, and rp-of work in an analogous manner.

Components of hp, q, and dump are accessed individually. The

value of

hp-of (pd, n)

is the row designator of the nth component of the handler

programs for the designated process. The prog-items dump-of

113

and g-of work in a similar way.

The value of

control-of (pd)

is the designator for a struct of the form

Sec 4.6

rd = row designator
n = integer

where rd and n are respectively the prog and pc components of

the state of the designated process. The prog-items status-of

and env-of work analogously. Because the structs produced by

these operations contain I-values a process can use the

operations to extract values for a collection of state

components, some of which it can subsequently change by

assignment, and then use the corresponding component setting

operation to restore the modified collection.

An additional set of operations enables a process to

access the values of its own state components without

specifying its own process designator. \f.hen

is interpreted it is as if

prog-of (proc)

were being interpreted. Similary the prog-items ES, level,

stack, prog-id, proc-id, E£, ~, ~, dump, control and env work

in a manner analogous to their counterparts discussed above,

with the exception that a process designator is not specified.

114 Sec 4.6

The process is understood to be the one performing the

operation. These operations are included for convenience.

Note that the sflag component is treated differently from

other state componente with respect to component setting and

accessing. There are no operations for it analogous to the

set-~ and ~-of operations for other components. The

operations t-seize and release are the only means for setting

and extracting its value. This is consistent with the sflag

component's function as a lock. A "set-sflag" operation would

defeat its purpose. There is no need for a process to ever

examine its own sflag for the fact that it can proceed implies

that the value of its sflag is nil.

4.7 Isolation and Interaction in the Model

With the exception of the relation existing between a

process and those processes it creates, the model insures that

processes are normally isolated from one another. Consider the

ways two processes could interact. (As Section 2.4 notes, all

interactions bet\veen processes must occur through shared

memory.) In the model there are just three:

1. by way of shared memory elements (cells, stacks,

queues);

2. by way of the interrupt operation in which case the

memory shared is the relevant queue of the q state

component;

3. by way of component setting operations in which case

115 Sec 4.7

the state components set represerrt the shared memory;

Each requires use of either the process designator of the other

process or a memory designator known to the other process.

The only operations that generate process designators or

memory designators are new-proc, new-cell, new-stack and

new-queue. Processes can not arbitrarily create process or

memory designators. In particular, a process can not generate

a value which it can subsequently use as a process designator

or as a memory designator. Because a process can not generate

designators of existing processes or memory designators held by

other processes, it can "have" such a designator only if it has

been "given" it. In this way the model insures control of

isolation of processes.

It is clear why two non-interacting processes, initially

isolated from one another, can not interact unless "helped"

externally. If they do not have the required memory or process

designators there is no way they can obtain them on their own.

For interactions to be possible there must exist a

mechanism for relaxing the isolation of processes from one

another. In the model interactions are made possible by the

new-proc operation. When a process creates another it obtains

the process designator of the new process. Hence, it is

possible for a process to interact with processes it creates in

any of the ways listed above. Furthermore, because it can

interact with them, it can arrange for them to interact with

116 Sec 4.7

each other by providing them with the required process or

memory designators.

Consider, for example, how a process could arrange for two

processes it has created to interact by way of interrupt

events. To do so it must provide each with the other's process

designator. In addition, it must establish conventions for the

interactions. It can establish the necessary conventions by

setting the handler programs component of each's state. These

arrangements having been made, the prerequisites, noted in

Section 2.4, are satisfied and the two processes are free to

interact:

1. each process has been made aware of the other and has

been provided with the other's designator;

2. the q components for the processes represent the shared

memory;

3. the monitoring action of each state transition detects

interactions when they occur; interpretations for the

interactions are defined by the hp state components of

the processes.

The ability to control interactions between processes is

based on the fact that values, in particular process

designators and memory designators, can not be arbitrarily

generated by processes but rather can be created only in

certain restricted ways. Unfortunately this permits only very

coarse control to be exerted. vnlether or not it is sufficient

depends upon how hostile processes are to one another. In any

117 Sec 4.7

environment but a very friendly (and debugged) one it is likely

to be insufficient. There is, for example, no way to control

how a process uses the designator of another once it obtains

it. It can interrupt the other process; it can seize it and

change its state in any way it sees fit. The possibility of

interaction degenerating to interference is very real. This

represents a weakness in the model. It is a consequence of too

great a relaxation of process isolation. Finer controls for

process interactions are desirable.

The following hypothetical situation illustrates another

aspect of this weakness:

Process P is to create processes upon request from

initial state specifications. In addition, P is to act

in a supervisory manner toward the processes (slaves)

it creates. That is, it is to have some control over

them. For example, P should be able to cause a slave

to terminate. The specifications for processes it is

to create originate externally to p.

This situation is not an unrealistic one. Operating systems

exhibit behavior similar to PIS. An operating system receives

requests originating externally to it to create processes and

it is important that the system be able to control processes it

creates.

A technique P night use to control its slaves is to

reserve an important interrupt level, say levell, for

interactions with them. P could do this by setting the hp(l)

118 Sec 4.7

component of the state of each process it creates such that

whenever a slave receives an interrupt request of importance 1

from p the slave responds as P wishes. Unfortunately, because

processes are able to set their own state components, this

technique will not always work. P has no control over the

process specifications it receives. Therefore, P can not be

sure that a slave will not set its level component to ignore

pIS interrupt requests or even redefine its hp(l) conponent to

react as it wishes to pIS requests.

As an alternative technique, whenever it wishes to exert

control over a slave, P could seize the slave and force it to

behave in a particular way' by setting its state components.

This technique is unsatisfactory for at least two reasons:

1. It is just barely workable. Should a slave obtain pIS

designator it could seize P. The result could be

catastrophic.

2. While it solves this problem, it is not applicable to

the solution of the more general problem of which this

is a specific instance. Suppose, for example, that

slaves create other processes. P could not use this

technique to control descendents of its slaves because

there is no way to force its slaves to reveal

designators of processes they create.

The general problem is that of controlling the abilities

of processes. As the model currently exists all process are

equally capable. There is no way to restrict the capabilities

119 Sec 4.7

of a particular process. If there were, the first technique

proposed could provide a workable solution to the specific

problem. P could restrict the way slaves set their level

component and could prevent them from tampering with their

hp(l) components. There is no way P can do this as the model

presently exists, short of responding to each request to create

a process by creating, instead, an "interpreter process" which

interprets the specified prog component.

no attempt is made in the present chapter to correct the

weakness ·noted above. Rather, further discussion of it is

deferred until Chapter 7. Chapters 5 and 6 present a series of

examples in which the model is used to describe some

non-trivial process behavior patterns. I1y reason for

organizing the dissertation in this way is to give the reader a

chance to familiarize himself with the model by seeing it used

before presenting the additional features which permit process

capabilities to be controlled. The reader may, if he wishes,

read Chapter 7 before Chapters 5 and 6 with little loss in

continuity.

4.8 The Model in Perspective

The important aspects of the model for process

representation which have been presented so far are summarized

in this section. ~he approach taken is to reconsider the

questions posed in Section 2.10, indicating for each how it is

addressed in the model. To aid the reader the questions are

120

repeated and relevant section numbers noted.

Sec 4.8

II. How are the operations a process performs represented?

The operations are represented by the prog component of

the process state. The prog component is a structured

collection of prog-items, identifiers and other members of

the universe of discourse which, taken together, define

the actions comprising the current activity of a process

(Sections 3.2, 3.5, 4.5).

12. How does a process keep track of which operation to do

next?

The pc component of the process state indicates the

operation of the prog component to be interpreted next

(Sections 3.2, 3.3, 3.5, 4.5).

13. HOY1 does a process store intermediate results until they

can be used?

Temporary storage is accomplished by the stack component

of its state (Sections 3.2, 3.5).

14. How does a process keep track of identifier-value

bindings?

Identifier-value bindings are recorded in the prog-id

component of its state. A process has the ability to add

and delete bindings as it wishes.

15. ~"lhat is the universe of discourse?

fiincludes integers, truthvalues, process designators,

121 Sec 4.8

memory designators, structure designators, identifiers and

undef (Section 4.3).

16. What operations can a nrocess perform?

Sections 3.4, 4.3, 4.4, 4.5 and 4.6 describe the operation

repertoire. Appendix 1 is a summary of all prog-items.

El. How can a process achieve shared memory?

The q component of a process state is directly accessible

to the process and indirectly accessible to others by way

of the interrupt operation (Sections 3.2, 3.4, 4.6, 4.7).

Furthermore, processes can share cells, queues, and

stacks; Section 4.7 discusses how this can be

accomplished.

E2. How can a process indicate the relative importance of its

current activity?

The value of the level component of a process state

indicates the relative importance the process places on

its current activity (Sections 3.2, 3.3, 3.4).

E3. How does a process know when to interrupt its current

activity?

Assuming that the value of the level component of its

state is lev, a process is to interrupt its current

activity whenever an item appears in ~(j) of its q

component for j(lev (Sections 3.3, 3.4).

122 Sec 4.8

E4. How is monitoring for interrupt events accomplished?

Part of each state transition checks the q component of

the process state for the presence of interrupt requests

(section 3.3).

E5. How are the relative urgencies of interrupt events

represented?

The importance of an interrupt request relative to other

interrupt requests and tile current activity of a process

is defined by the queue it appears in (Section 3.4).

E6. How can a process find information about a particular

interrupt event so that it may properly resoond to it?

Associated with each interrupt request are two pieces of

information: its relative importance, which is defined by

the queue it appears in, and its value, which is the

actual value that is in the queue and constitutes the

request. A process can access values in the queues of its

q component (Section 3.4, 4.6).

E7. Can a process accept more than a single request to

interrupt its current activity?

Yes, it can accept as many requests as its queues can hold

(Section 3.4, 4.2).

E8. HOVl does a process know the proper response to a

particular interrupt event?

The handler programs component of its state defines the

responses for all interrupt requests (Sections 3.2, 3.3,

3.4) •

123 Sec 4.8

E9. How can a process remember an interrupted activity so that

it may resume it after responding to an interrupt event?

The interrupted activity is automatically remembered as

part of the state transition initiating the interrupt

response. It is saved in the dump component of the

process state (Sections 3.2, 3.3, 3.4).

The definition of the model is completed in Chapter 7

which considers the problem of controlling the capabilities of

particular processes. In that chapter the model as described

in Chapters 3 and 4 is extended to enable control to be exerted

over certain external aspects of process behavior.

124

CHAPTER 5

A Programming Notation For Using the rIodel

5.1 Introduction

This chapter has tvlO parts. The first part presents, in

an informal way, a progrmlli~ing language for describing

p-graphs, parts of which have already been introduced in

Chapters 3 and 4. The second part is a collection of examples

intended to illustrate both the language and some features of

the model.

5.2 PGL - A Language for Describing P-graphs

The relatively simple and intuitively appealing

explanation of the model state transition rule (see Figures 3.1

and 3.3 which are reproduced in Appendix 2) is due, in part, to

the austere structure of p-graphs. The use of p-graphs as a

programming notation has two serious flaws:

1. most people find postfix notation unnatural; and

2. each program in p-graph form represents the solution of

a graphical layout problem which for large programs can

be quite formidable.

Consequently, it is very tedious to express any but the most

trivial programs directly in terms of p-graphs. From the point

of vievl of programming the rOYl representation for p-graphs is,

125 Sec 5.2

if anything, worse than p-graphs themselves. ~his section

presents a simple language, called PGL (for p-~raph language),

for describing p-graphs.

The purpose of a descriptive language is to suppress

aspects of descriptions which are constant to permit attention

to be focused on aspects of a particular description which are

variable. The design of such a lan0,uage is concerned largely

with deciding which aspects are likely to be constant and

should therefore be suppressed and which are likely to be

variable and, therefore, emphasized. The goals of a language

provide the basis for making such decisions.

PGL has a single, simple goal. It is to serve as a

vehicle for demonstratinq the descriptive power of the model.

It should, therefore, be simple and unsophisticated and should

contain no more features than "necessary" to make it easy to

describe p-graphs. ~vo important considerations have

influenced the design of PGL:

1. all features of the model must be accessible from PGL;

2. the correspondence between PGL constructs and the

p-graph fragments they represent should be obvious.

lihile PGL itself is relatively unsophisticated, it can be used

to describe quite sophisticated patterns of process behavior

(see Chapter 6).

As progr~~ing languages go, there is little in PGL that

is unusual. For the most part, the meanings of various

126 Sec 5.2

constructs are obvious from their syntax. PGL has the

following capabilities:

1. It is unnecessary to use postfix notation. Nested

expressions are permitted.

2. It is unnecessary to draw " next" arcs. Sequencing can

be described in several ways.

3. There are a variety of ways to express conditional and

iterative execution.

4. There is a declarative or automatic binding facility

which makes it unnecessary to explicitly use the bind

operation.

5. Infix notation is permitted in a number of situations.

6. There is a comment convention.

7. There is a macro facility.

The presentation of PGL is relatively informalo Each

feature is explained by exhibiting a correspondence either

between it and a fragment of p-graph or between it and other

features previously explained.

Figure 5.1 defines the syntax for PGL. The grammar

presented for it in Figure 5.1a is ambiguous. To disambiguate

it the precedence relations shown in Figure 5.1b and the

convention that binary infix operators (OP's) associate to the

right are adopted.

The remainder of this section discusses, in turn, each of

the features of PGL.

127 Sec 5.2

p : : = let 10 = E { . 10 = E r~ In 8 B,

B : : = S { . s 1 If,

S : : = iff E do E I until E do E I 1£ E then E else E

while E do E unless E do E I for 10 = E to E do E

10 => S nextis 10 E : = E I E

E : : = E [E] E OP E I - E I E . 10 I prog-item

prog-item (E { E }W) I [ID : E { 10 . E 1~], , .
[E { , E }*] I § P ~ I (P) I nu 11

ref (10) I LIT

increasing

precedence

L11 ::=

oP :: =

undef

+

nil true fell se INT 10

* / < > ~ 2- 1\ V

(a)

[

* /
+

> < 2- ~

1\

V

(b)

Figure 5.1

a. Grammar for PGL. A PGL program is regarded as a continuous

stream of characters rather than a sequence of lines, in that,
with two exceptions, the transition from one line to the next

has no sign if i cance in the 1anguage •. The two except ions are:

the newline character is treated as a space; and, newline

terminates comments (see Section 5.2.6). 10 denotes an
arbitrary identifier and INT an arbitrary integer. {l>1«

represents 0 or more repetitions of the string ~.

b. Precedence relations which, with the rule that OP's are right
associative, disambiguate the grammar in (a) for PGL.

5.2.1 :'Jcsting

128 Sec 5.2.1

Application of prog-item pi to operands rl, ••• , rn is

denoted by the expression

pi (r 1, ••• , rn) (5 • 1)

where the ri may themselves be such expressions. The p-graph

fragment described by (5.1) is its postfix renresentation and

is displayed in Figure 5.2a. When pi is interpreted the prog,

pc and stack components are as shovm in Figure 5. 2b; the top

item of the stack is the value of rl, the second item the value

of r2, ••• etc.

The single exception to the above rule occurs when ~ is

quote. For quote (x) to have the desired effect (see Sections

3.5 and 4.3), quote must be interpreted before x. The p-graph

fragment corresponding to quote (x) is shown in Figure 5.2c.

5.2.2 Sequencing

Se~icolons (;) are used in place of "next" arcs to specify

sequencing. The p-graph fragment corresponding to the

expression

a ; b (5.2)

is displayed in Figure 5.3a.

not be used, PGL permits its

Although postfix notation need

use. Hence, the expression

rn ; ••• ; rl ; ~

is equivalent to (5.'1).

129 Sec 5.2.2

next

fragment {
for x

..

pc

prog

{(Jext
~ext

[ill

{Qext
p-graph
fragment
for r

n

fragment
for r

1

(a) (b) (c)

Figure 5.2

a. P-graph fragment described by (5.1).
b. The prog, pc and stack when E! is interpreted.
c. P-graph fragment for quote (x).

fragment
for E1

fragment
for E2

fragment
for E3

fragment {for a

next

fragment {]fa r b

\J }
(a) (b)

Figure 5.3

a. P-graph fragment described by (5.2).
b. P-graph fragment described by (5.3).

130 Sec 5.2.2

In PGL sequencing can be specified by explicitly naming

successor expressions. The construct

ID =) E

associates the name ID with the expression E; and

F ; nextis ID

specifies that the successor to expression F is the one named

ID. Figure 5.3b illustrates the p-graph fragment described by

ID => El;

E2;
nextis ID;
E3

(5.3)

To translate the above PGL program into the corresponding

p-graph an association is made between ID and the lientry" node

of the p-graph fragment which corresponds to El. That is, the

integer which is the index of the relevant p-graph node (see

Section 4.5) is associated with ID; stated somewhat

differently, the " va l ue " of a PGL "label" is an integer. Of

course, the association bebleen ID and the node index is not

part of the p-graph that results from the translation. Note

that the senicolons that surround the nextis construct do not

represent "next" arcs.

The PGL operator null is a placeholding operator intended

for use with the expression-naming and nextis constructs.

Figure 5.4 illustrates the p-graph fragment corresponding to

131 Sec 5.2.2

El;
ID =) null;

E'2'7I
(5. 4)

E3;
nextis ID;
E4

note that null is not a prog-itcm but rather is a PGL operator.

} fragment
for El

ID-----------

}fragment
for E2

} fragment
for E3

}
fragment
for E4

Figure 5.4

P-graph fragment described by (5.4).

132

5.2.3 Conditionals and Iteration

Sec 5.2.3

PGL includes a variety of ways for expressing conditional

and iterative execution.

The "one-armed" conditional expression

iff a do b ; c (5.5)

specifies that a is to be interpreted first. If its value is

true, b is to be interpreted next, followed by interpretation

of c; otherdise, c is to be interpreted immediately after a.

The effect of

is identical to that of

unless a do b c (5.6)

iff ~(a) do b; c

Figure 5.5 illustrates the p-graph fragnents corresponding to

(5.5) and (5.6). The p-qraph fragment described by the

"tv/o-armed" concHtional expression

if a then b else c

is shown in Figure 5.6.

The iterative expression

while a 9£ b ; c

d (5.7)

(5.8)

specifies that b is to be repeatedly interpreted as long as the

value of a is true. Its effect is equivalent to that of

L =) iff a do
----(b~ nextis L);
c

where L is an identifier not found elsevlhere in the program.

Each iteration beqins with interpretation of a. If its value

133 Sec 5.2.3

1fragment

J
fragment

for a for a

false

l fragment

}
fragment

for b for b

} fragment

}
fragment

for c for c

(a) (b)

Figure 5.5
(

a. P-graph fragment corresponding to (5.5) .
b . P-graph fragment corresponding to (5.6) .

fragment
for b

fragment
for a

fragment
for c

fragment
for d

Figure 5.6

P-graph corresponding to (5.7)

134 Sec 5.2.3

is true, b is next interpreted, followed by another iteration;

othenvise, the iterations are ended and c is next interpreted.

Thus, if a is initially false, b is not interpreted at all.

The effect of

until a do b

is equivalent to that of

c (5.9)

while not (a) do b ; c

Tne p-graph fragments corresponding to (5.8) and (5.9) are

displayed in Figure 5.7.

next

] fragment
for a

fragment
for a

next

"-v--' '--v--J '---v-' "--v-'
fragment fragment fragment fragment
for b for c for c for b

(a) (b)

Figure 5.4

a. P-graph corresponding to (5.8) .

b • P-graph corresponding to (5.9) .

The iterative expression

for i = a to b do c ; d

is equivalent to

135 Sec 5.2.3

store (i, a)i
until gr(rval(i), b) do

(C-'-i-

store (i, ~(i) + 1))i
d

~~lere c' is obtained from c by replacing each occurrence of i

by~ (i). ~ote that with this rule for generating c' it is

not possible to directly update i within c because

store (i, value)

in c would appear in c' as

store (rval(i), value)

This treatment of the iteration variable is based on the

feeling that within c most situations call for its r-value.

Therefore, PGL supnresses this constant aspect, by allowing

omission of the rval operator. There are, however, situations

in which the I-value of i and not its r-value is desired within

c. To accommodate such situations, PGL includes the operator

ref which can be used to prevent insertion of the rval operator

when c' is generated. When ~(i) appears within the body of a

for construct (i.e., within c), it is replaced by i when c' is

generated. Appearances of the ref operator which are not

'Vli thin the body of a for construct have no effect on the

p-graph being described. Note that ref, like null, is not a

prog-item but rather is a PGL operator.

5.2.4 Declarations

PGL provides neans to bind identifiers (i.e., declare

variables) without explicitly referring to the prog-id

136 Sec 5.2.4

component. The expression

let xl = vI ; x2 = v2...-
lon

A

... xn = vn

where the xi are identifiers, is equivalent to

set-prog-id (proc, [top:nil,
rest :prog-id])

bind (quote (xl) , vI) ;
bind (quote (x2) , v2)

bind (quote (xn) , vn)
~
set-prog-id (proc, prog-id.rest)

Upon "entry" to a let construct a nm'1 id-layer, which is to

bind the "declared" identifiers, is "pushed onto" the existing

prog-id component. On "exit" from it, that id-layer is "popped

from" the prog-id component. The let construct provides block

structure scoping rules for identifiers. Note, however, that

PGL does not require that the model be used in a block

structured way. The prog-items bind, unbind and set-prog-id

can be used in whatever way one see fit.

A caveat concerning the let construct is in order. Entry

to and exit from expression A can occur as the result of

operations .vhich set the prog or pc components (e.g., set-prog,

set-pc). ~'lhenever such an "abnormal" entry to or exit from A

occurs, the prog-id component is not chanqed. The block

structure effect is achieved only when entry to and exit from

the let construct is "normal": that is, "through" the

set-prog-id operations which bracket the p-graph corresponding

to ll..

5.2.5 Infix Notation

137 Sec 5.2.5

PGL permits departure from the prefix notation described

in Section 5.2.1 in a number of situations, several of which

have previously been noted in Chapters 3 and 4. Infix

equivalents are provided for the following operators.

1. store

a := b is equivalent to store (a, b).

2. select

if id is an identifier, a.id is equivalent to

select (a, quote (id)) •

3. index

a[n] is equivalent to index (a, n).

4. plus, minus, times, ~, gr, ls, le, 2:.' and, or

infix oF'pre J.x
representation equivalent

a+b plus(a, b)
a-b minus (a, b)
a*L times (a, b)
alb div(a, b)
a>}) gr(a, b)

5. rmv

[vl, ••• , vn]is equivalent to

~ (n, vl, ••• , vn)

G. struct

infix prefix -,
representation equivalent

a<.b ls(a, b)
a>b ge(a, b)
a<b le(a, b)
aAb and (a, b)
aVb or(fl., b)

if all the idi are identifiers, [idl:vl, ••• , idn:vn]

is equivalent to

struct (n, quote (idl) ,vl, ••• , quote (idn) ,vn)

138

Furthermore, the expression

Sec 5.2.5

is used in PGL to denote the row that represents the p-graph

corresponding to expression E. 'rhus, for example the rO'.v

corresponding to the p-graph shown in Figure 4.5 on page 103

can be denoted in PSL by

~ until ~ (10, length (x)) do
(push (x, z))

x [10'---~

5.2.6 Comments

Comments can appear in PGL. ~ll characters between a

double slash ma~((II) and the end of a line are regarded as

comment and have no effect on the p-graph being described.

5.2.7 :lacros

There is a macro facility associated with PGL. A macro

definition is made by associating with a macro name a specific

string of PGL text. Hhenever a macro~ appears in a p-graph

description, the macro named is replaced by the string of text

which is its definition. 'iacros can have parameters, in which

case the string replacement includes substitution of the actual

paraneters appearinq in the macro call for the formal

parameters appearing in the macro definition.

The syntax for macro definitions in PGL is:

H1\CRO DEF : : = !1ACRO

139

name P END:'1ACRO

Sec 5.2.7

~1ACRO name ID {, ID }*') P ENm1ACRO

~,mCRO and END~1ACRO are terminal symbols which serve as

delimiters for macro definitions. The macro being defined is

~ and the string of PGL text to be associated with it as its

definition is P (see Figure 5.1). The first alternative is

used to define macros with no formal parameters and the second,

to define macros with one or more parameters.

I'1acro calls in PGL are of the form

f-1ACRO CALL : : = name name (E {, E }If)

where the two alternatives represent, respectively, a call for

a macro with no parameters and one for a macro with parameters.

In PGL macro calls belong to syntactic class E (see Figure

5.1) •

The follo',oTing macro definition defines increment, a macro

which increments its first parameter by its second parameter:

HAcno: increment (x, y)
x := rval (x) + y

ENDHACRO

Hhen the macro call

increment (ALPHA, 7)

is encountered, it is replaced by

ALPHA := rval (ALPHA) + 7

Hacros are used extensively in the examples which follow.

In all cases, they are used in such a straightfordard way that

140 Sec 5.2.7

any "reasonable" interpretation of macro expansion should not

lead to confusion as to what is intended. For this reason, I

have chosen not to belabor the reader with further explanation

of how macro expansion works in PGL. (A programmer's manual

for a PGL implementation would, of course, detail rules for

macro expansion.)

5.3 Using PGL: Examples

This section contains four examples vlhich illustrate the

use of PGL. The examples are:

1. making a copy of the process stack component;

2. a locking mechanism;

3. a LISP like Eval operation; and

4. copying arbitrary members ofll.

The examples each make use of the macro facility described in

Section 5.2.7.

5.3.1 ~'1a}:ing a Copy of the Stack Component

There aretVlo parts to this example. The first part ShOV1S

hovl a process can nake a copy of a stack other than its own

stack state component. A macro stack-copy, which has a single

parameter, is defined. The value of

stack-copy (s)

is to be the designator of a new stack containing the same

items as the stack designated by s.

141 Sec 5.3.1

in
until ~(rva1(i), 0) do

(push\C; S [rva1 (IT])
~ rval(ir-=-l)

The second part attacks the trickier problem of how a

process can copy its own stack component. A macro

stack-camp-copy, uhich has no parameters, is defined. The

value of

stack-camp-copy

is to be the designator of a new stack \·"hich holds the same

items currently held by the process stack component. That is,

after the p-graph corresponding to stack-camp-copy is

interpreted, the top item of the process stack is to be the

designator of a stack containing the same items as the rest of

the process stack component.

1. stack-copy

The strategy for stack-copy is relatively simple. A new

stack, C, is allocated and the items contained in the stack s

are pushed onto it. The definition for stack-copy is

llACRO: stack-copy (s)
let S Si

C = new'-stack i
i = new-cell (length(S»)

c
ENDHACRO

Comments:

1. Hhen interpretation of stack-copy is completed, the top

item of the stack component is the stack designator to

which C, the copy, was bound.

2. The actual parameter of stack-copy may be an

arbitrarily complex expression. Using S within the

I

142 Sec 5.3.1

body of the macro rather than s insures that s is

evaluated only once. Because macro expansion involves

nothing more than string substitution, if S were not

bound to s, s would be evaluated for each appearance of

S in the definition of stack-copy.

2. stack-comp-copy

To see why it is tricky business for a process to copy its

mm stack component consider the effect of stad;:-copy (stack),

assuming that the length of the process stack is n. First,

consider what happens when new-cell (length(S)) is interpreted.

After S is interpreted, the process stack contains n+l items.

Thus, the ne\V cell is initialized to n+l. Next, consider \.,hat

happens with the first interpretation of S[~(i)]:

rval(i): causes n+l to be pushed onto the stack increasing

its length to n+2;

S: causes its own designator to be pushed onto it,

increasing its length to n+3.

index: accesses the (n+l)st item in the stack component,

which, clearly, is not its "bottom" item.

The macro stack-camp-copy avoids these difficulties by

a. saving the designator of the stack component,

b. temporarily setting the stack component to a new stack,

c. making a copy of the "saved" stack using stack-copy,

d. pushing that copy onto the "saved ll stack, and

e. restoring the IIsavedll stack.

The definition for stack-coMp-copy is

143 Sec 5.3.1

~mCRO: stack-comp-copy
let 5 - stack IISave designatorrn- Ilof stack component.
set-stack (proc, new-stack) IISwitch stacks.
push (S, stack="coPr (5)) 11;1ake copy.
set-stack (proc, S IIRestore original

mm:1ACRO - Iistack.

Comment:

Each use of stack-comp-copy requires the allocation of a new

stack, to be used temporarily while the copy is being made.

This potentially wasteful stack allocation can be avoided by

using the same stack each time. This could be accomplished by

using the proc-id component to bind an identifier, say T-STACK,

to a stack designator and replacing the first set-stack

operation in stack-comp-copy by

set-stack (proc, proc-id.T-STACK)

5.3.2 A Locking ~,1echanism

This example describes a simple locking mechanism which a

process can use to insure that it has sole access to a

particular memory element. In effect, the locking mechanism

provides a new kind of memory element called a lock. Before a

process can read or vlri te the "contents" of a lock, it must

first lock it. Five macros provide the locking mechanism:

1. new-lock is the lock allocation operator. The value of

new-lock (v) is to be the designator of a new lock whose

"contents" are initialized to v.

2. t-lock is a predicate \'Ti th a side effect. When

t-lock(d) is interpreted an attempt is made to lock the

144 Sec 5.3.2

designated lock. If the lock is not currently locked,

the attempt succeeds and the value of the predicate is

true; othervlise, it fails and the value is false.

3. unlock unlocks a designated lock, provided the process

performing unlock currently has the lock locked.

4. lock-val is the retrieval operator for locks. It

produces the "contents" of a designated lock, orovided

the process performing it currently has the lock

locked.

5. lock-store is the storage operation for locks. It

changes the "contents" of a designated lock, provided

the lock is currently locked by the process performing

it.

j\ lock is represented by struct of the form

"contents"
of lock

process designator
or undef

The status component indicates whether the lock is locked and

the proc component, the process, if any, which currently has

the lock locked. The t-lock macro performs a t-set operation

on the status component. If the t-set succeeds, the proc

component is set to the designator of the performing process.

The unlock, lock-val and lock-store macros each check the proc

145 Sec 5.3.2

comoonent of the designated lock to see whether it is currently

locked by the performing process. There is no \'lay to prevent

processes from directly accessing the components of a lock.

'i'herefore, to insure tl1at the locking mechanism works properly,

processes must agree to access locks only by way of the five

lock macros.

The definitions for the lock macros are:

!lACRO: ne"1-1ock (v)
[val:new-cell (v) ,

status:new-cell(O) ,
proc:new-cell(undef)]

ENDHi\CRO

r'!ACRO: t-lock (d)
let L - d-.-In
If t-set (L.status)
then (L.proc:= proc
erse false

ENm·1i\CRO

~)

~'!ACRO: unlock (d)
let L - d..--
In
If ~ (rval{L.proc), proc)
then (L.proc:= undef-;-L.status := 0)
else ERrtOHl

I:IJDH1\.CRO

rmCRO: lock-val (d)
let L - c1..--
In
if ~ (rval{L.proc),
then rvar-{L.val)-- -else ERROH.2

END1'1ACi'fc)""

proc)----

146 Sec 5.3.2

11ACRO: lock-store (d, v)
let L = d
in
IT ~ (rval(L.proc),
then L.val := v
eI"S'"e ERROR3

END~'IACRO

Com.rnents:

oroc)--

1. ERROR1, ERROR2 and ERROR3 are left unspecified. For a

particular application appropriate error handling

actions could be specified.

2. ;\ lock could be represented More efficiently ~y a

struct of the forn

"contents"
of lock

0,1 or process designator

Such a change in representation would, of course,

require that the macros be redefined appropriately.

5.3.3 A LISP-like Lval Operation

For this example a macro eval, similar in effect to the

eval function of LISP [l1c62], is defined. The value of

eval (x, p)

where x is a p-graph and p is a prog-id (i.e., x is a row

representing a p-graph and p, a s·truct sui table for use as the

prog-id component for a process state), is to be the result of

147 Sec 5.3.3

interpreting x in an environment with prog-id p. The eval

macro is used in Sections 5.3.4, 6.3 and 6.7.

The definition for eval makes use of the rp and proc-id

state components. The strategy used to define it is the

follm·,ing:

1. When eval(x,p) is performed values for the prog, pc and

prog-id components, for use after x has been evaluated, are

saved. lJext, the prog, pc, and prog-id components are set

to initiate evaluation of x with respect to prog-id p.

2. "Return" upon completion of the evaluation of x is to be

accomplished by the rp component. (Recall that rp is

interpreted when interpretation of the prog component is

completed; see Figure 3.1.) vJhen interpretation of x is

completed and rp is initiated, the top item in the process

stack is the value of x. The rp component performs the

return by setting the prog, pc and prog-id components to

the values saved by eval.

3. The identifier EVAL STACK is bound in the proc-id

component. It is bound to the designator for a stack which

holds values, saved by eval, for the prog, pc and prog-id

components.

4. The auxilary macros make-control and top-from are used in

the definition of eval. Interpretation of

make-control (x, n)

148 Sec 5.3.3

where x is a p-graph and n is a node of x (i.e., x is a row

and n is an integer), produces a value which when used as

the operand for set-control results in interpretation of

p-graph x beginning at node n. Since the value of a label

in PGL is an integer (see Section 5.2.2), n may be a PGL

label. The effect of

top-from (S)

is to pop the top item from the stack designated S,

producing it as its value.

The macro definitions are:

~·1ACRO: tOD- from (S)
S[l]; +

pop (S)
ENDr1ACRO

rmCRO: make-control (x, n)
[prog:new-cell(x), pc:new-cell(n)]

mWHACRO

IISave prog and pc
II for return.
IISave prog-id for
Ilreturn.

th~CRO: eval (x,p)
push-rProc-id.EVAL STACK,

make-controlTprog, EXIT));
push (proc-id.EVAL STACK,
---- prog-id); -
set-prog-id (proc, p);
set-control (proc, make-control (x, 1));
EXIT ~ null - IIDefine

ENDH}\.CRO
EXIT.

To use eval a process must have a proc-id component of the

form:

[

EVAL STACK:new-stack

D

149

'l'he rp component vlhich accomplishes the return is

Sec 5.3.3

~ iff ~(O, length(proc-id.EVAL_STACK))//If no place to
do terrninat2; //return to, terminate.

s8t~rog-id (proc, //Restore prog-id.
toi3"="from(proc-id.EVAL STACK));

set-control (pr~c, - - //Restore prog and pc.
tQP=from(proc-id.LVAL_STACK)) ~

5.3.4 Copying l\.rbi trary .'1enbers of .n.

This example shoVls a '.:lay to "copy" an arbi trary member of

the universe of discourse. The macro copy, to be defined, is

used in Sections 6.4 and 6.5.

The notion of sharing is useful in discussing copying.

S~laring is said to occur bebleen t\V'o i terns \'lhich have one or

more memory designators in common. (rl'he statement "A and B

have memory designator C in common" means that designator C can

be obtained from A by performing an appropriate sequence of

operations, and can also be obtained from B by performing an

appropriate, but possibly different, sequence of operations.)

Some examples of sharing are shmvn in Figure 5.8. Sharing

occurs bet\veen the stack and the queue of Figure 5.8a; S[3]

and Q[l] share the same cell designator. Similarly, ~~e cell

designated L and the row designated R in Figure 5.8b e~1ibit

sharing; ~(L).b and rval(R[l]) share the same stack

designator. Note that the first and tilird components of R also

share.

S--~

a
false

L ---...tL-_+-_...J

7

150

17

(a)

R ------,~

1

19
undef

(b)

1front

Sec 5.3.4

Figure 5.8

Examples of Sharing

a. Sand Q share; S[3] and Q[l] are the same I-value.

b. Land R share; rval(L).b and rval(R[l]) are the same

stack designator. Note that R[l] and R[3] also share.

151 Sec 5.3.4

The basis for interactions bebveen processes is sharing

between process states (see Sections 2.4 and 4.7). A

consequence of sharing between two items is that whenever a

storage operation is performed on a memory designator held in

co~~on both items are affected. Sharing can not occur between

integers, truthvalues, prog-items or identifiers. Such values

are said to be atomic. On the other hand, sharing can occur

between iteMs which have "parts", such as rows, structs and

memory elements (queues, stacks and cells). Such objects are

said to be non-atomic. For this example process designators

are considered to be atomic.

The copy of a non-atomic item II is another non-atomic

item 12 which exhibits certain well defined sharing relations

vii th II and certain \'1ell defined "structural" simi larities to

II. The "copy" of an atomic item II is II itself. Copies can

De classified on the basis of the nature of the sharing

relations and structural similarities exhibited by II and 12:

1. For complete copies II and 12 are structurally

identical and no sharing exists between them. The term

"structurally identical" is taken to mean that the

sharing relations bet\V'een "components" of 12 (i.e.,

items accessible from 12 using rval, select and index)

are identical to those between corresponding

"components" of II.

2. For partial copies sharing may exist between II and 12,

and II and 12 need not be structurally identical.

152 Sec 5.3.4

Some examples should help clarify the distinction between

complete and partial copies. A struct Sl and its complete copy

82 are shown in rigure 5.9a. There is no sharing between Sl

and S2. Note also that Sl and 82 are structurally identical;

for example, note that in Sl, Sl.b and rval(Sl.a[2]) share the

same l-value, and that in S2, so also do S2.b and

rval(S2.a[2]). In general, the copies made by the macro

stack-copy, defined in Section 5.3.1, are partial copies of

stacks. Figure 5.9b shows a stack S, a copy C of S produced by

stack-copy and a complete copy CC of S. Partial copies such as

C are sometimes called "one-level" copies. Figure 5.9c

exhibits another kind of partial copy. Rmv R2 is a partial

copy of row Rl produced using a "copy rule" that requires

one-level copies of stacks and complete copies of all other

non-atomic values. ROVi I\.3 is a complete copy of Rl. Note that

there is sharing bet"veen IU and 1<..2. Furthermore, note that Rl

and R2 are not structurally identical; Rl[2] and Rl[l] [1]

share the same l-value whereas R2[2] and H2[1] [1] do not.

The macro copy defined in this example makes complete

copies. The following is the strategy used:

1. Copies are made by a dedicated process C which accepts

requests for its services from other processes. A process

P requests C to copy ite~ S by using the macro copy (S).

lfuile P waits (with its aflag set to fals~), C responds by

making SI, the requested copy. C expects requests for

copies to appear in its ~(2) component and to be of the

153 Sec 5.3.4

6

~----Sl

1

S2 -----i'\

(a)

t
true

6

top
I Jundef 7

cc

1

S C
,

true true

6 6

top ~ 1&

undef I 7 I undef

(b)

Rl R2 R3

3
undeft

(c)

Figure 5.9

Examples of complete and partial copies.

form

154 Sec 5.3.4

[requestor:p, original:S]

\'lhen SI is ready, P expects it to appear in its s.(lmax-l)

component.

2. C makes SI using the "function" COPY. (COpy is in reality

a p-graph which is " app lied" using the macro eval defined

in Section 5-.3.3.) COpy builds S I by "'.-Talking over" S. It

adds to SI a coPY of each non-atomic item of S it

encounters on its walk. To insure that components of SI

exhibit the saMe sharing properties as those of S, COpy

maintains a table, named TABLE, whose entries are copies of

the non-atomic iteMs of S encountered on its walk. For

each non-atomic item I of S it encounters COpy first checks

TABLE to see if I has been encountered previously. It then

works as follows:

l'I.. if I has not been previously encountered then

1. if it is a queue designator then

a. a queue designator II is obtained using

ne\v-qucue;

b. an entry is made for I and II in TABLE;

c. for each item I[i] for l~i(length(I)

i. if I[i] is atomic, it is added to II as

its ith item.

ii. othe~Nise, a copy of I[i] (made by COpy)

is added to II as its Lth item.

d. the copy of I is II.

155

2-5. analogous actions for the cases stack

Sec 5.3.4

designator, row designator, struct designator,

and cell designator.

B. if I has been encountered previously then there must

be an entry for it and its copy I' in TABLE. The

copy of I is I'.

3. TABLE is a stack to ~hich entries are made using push.

4. The follrn1ing auxilary macros are used in the definition of

copy:

a. lookup (I) , which searches TABLE for an entry for Ii

if an entry is found the value of lookup(I) is I',

the copy of I, otherNise, its value is undef.

b. enter(I, I'), which makes an entry for I and its copy

I' in TABLE.

c. is-atom(I), a predicate for atoms.

d. copyl(I), which "calls" the "function" COpy using

eval.

e. top-stack, whose value is the top item of the process

stack component.

Nhen .process C is created its status and environment

components are initialized as follows:

prog = undef
pc = 1
level = lmax
aflag = false

stack = new-stack
prog-id - nil
rp = rp defined in section 5.3.3 for eval
proc-id = [COPY:p-graph defined below-,---

TABLE:new-stack,
EVAL_STACK:new-stack]

156 Sec 5.3.4

CIS hp(2) component, whose job it is to respond to requests for

copies, is

§ until ~(o, length(proc-id.TABLE)) do
pop (proc-id.TABLE);

interrupt 1qT2) (1] .requestor, Imax-l,
copyl (s.(2) [1] .original)) ;

advance (q(2));
set-level=inactive (lmax) t

The definition for copy is

IIClear TABLE from
lithe last request.
IIHake the copy
Iland return it.

I 1\'Jai t for next
Ilrequest

llACRO: copy (S)
leve~ Ilplace current level in stack for "return".
interrupt (C, 2 III\equest copy

[requestor:proc, original:S]);
set-level-inactive (lmax) Iland wait for it.

ENDHACRO

The job of the hp (lmax-l) component for a process requesting a

copy is to accept the copy from C; a suitable p-graph for

hp(lmax-l) is

9 dump (lmax-l) .level := top-stack;
spop;
dump(lmax-l).aflag := true;
SL (Imax-l) [1] ;
advance (SL(lmax-l));
set-status (proc, dump(lmax-l)) ~

IIRetrieve level
Ilfrom the stack.

IIPush the copy
lionto the stack.

Definitions for the auxilary macros follow.

r'lACRO: C(PYI (x) Ilr1.acro to "call" COpy
eval proc-id.COPY, [top:[quote(S) :x], rest:nil])

ENDI1ACRO

~-1ACRO: lookup (I)
let T = proc-id.TABLE;

A = hew-cell (undef);
i = new-cell (0)

157 Sec 5.3.4

IIMacro to search TABLE
II for entry I.

in
for i = 1
---r iff

(

EXIT =)
ENDHACRO

to length(T) do
~ (I, T[iJ.item)
1\ : = T [i J •copy,
nextis EXIT));

rval (A)

do

}\.1ACRO: enter (S, C)
push (proc-id.TABLE,
~ [item:S, copy:C])

EIJDHACRO

I11".CH.O: is-atom (x)
is-int (x) "
is-ident (x) V
is-proc (x) V
is-prog-item (x) V
is-truthval (x)

END~1ACRO

II:-lacro to make entry
Ilin TABLE for S.

I'IACRO: top-stack
stack [3]

ENDMACRO

IIWhen index is performed the top
112 items in the stack are the
Iidesignator for the stack and 3.

Ills S an atom?
IIYes, S is its own copy.
IINo, has S been
Ilpreviously encountered?

The p-graph for COpy is written assuming it will be evaluated

in an environment in which the item to be copied is bound to S.

COpy is defined as follows:

§ if is-atom (S)
then S
erse
-r-Iet x = lookup (S)...-

J.n

if is-undef (x) IINo, for S an Ivalue
then if is-lval (8) then
~ let C = new=ceIl (undef)

in
enter (S, C); C := copyl (rval(S»;
C)

158 Sec 5.3.4

else if is-queue (5) then IIFor S a queue
---- --(let C = new-queue;

i = new-cell (0)

IIFor S a stack

in
enter (S, C);
for i = 1 to length(S) do

enqueue (C, cooyl(STi]»;
C)

else if is-stack (S) then
---- -- (Ie t C - ne",-staCk ;

-- i = new-cell (lengtl:l (S»
in
enter (8, C);
until ~ (0, rval(i» do

(push (C, ,?rYl(S[rVal(i)]»;
i : = rval 1 - 1);

IIFor 8 a
(ni 1)
(Iength (S))

C)
else if is-rm¥ (S) then
---- --(let C = new=Gell

i = nevI-cell
in
until ~(O, rval(i» do

(copyl (S[rval(i»)}T
i := rvalrrr-- 1);

C := row "'('iCIigth(S»;
enter-rs, rval(C»;
rval (C))--

row

IILeave copies of
Ilcomponents on
lis tack for rm'l.
IIBuild row from
Ilcopies on stack.

liS must be a structelse
---rlet C = neTd-cell (nil)

SEL - selectorsrS);
i = nC'd-cell (length (SEL))

in
for i = 1 to length(SEL) do IILeave copies of--r copyl TSclect(S, SEL[IT»;llcomponents on

SEL[i); Iistack for struct.
C := struct (lenvth(SEL»; IIBuild struct from
enter (S, rval(C); Ilcopies on stack.
rval (C))-

else x t liS has been previously
Ilencountcred and is
Ilin 'TABLE.

159

CHAPTER 6

using The ~·lodel: Examples

6.1 Introduction

This chapter illustrates by example how sophisticated

patterns of process behavior can be expressed in terms of the

model. Six examples are presented, each presentation having

three parts. The first part of each explains the behavior

patterns of interest; the second part discusses the strategy

to be used to synthesize the behavior in terms of the model;

and, the third part presents the PGL code for the description.

The casual reader may choose to skim the third part of each

example.

Several further remarks concerning these examples are in

order. It is not the intent of this chapter to teach basic

programming skills. Consequently, PGL code for the details of

tasks such as building and manipulating tables is frequently

omitted. Because the examples are intended to be illustrative,

the programs that appear in this chapter are written to be

efficient pedagogically. Ho attempt to optimize in any other

way is made. In particular, an effort is made to avoid using

programming "tricks" to minimize the "run time" or "storage

space" the programs would require if run. Each example

soecifies process state components which enable processes to

160 Sec 6.1

exhibit the particular behavior pattern of interest. No

attempt is made in any of the examples to collect the

specifications together into a single formal specification.

6.2 Blocks and Secret Variables

The notion of secret variables for block structured

languages was first proposed by Hitchell [Hi70). The essence

of the idea is that there are two kinds of variable

declarators, ~ and secret. Variables declared using ~ obey

the usual block structure scoping rules, the scope of a "new"

variable being the block in which it is declared and all nested

blocks in which it is not redeclared. The scope of a variable

declared using secret is limited to the block in which it is

declared. Such a variable is not accessible from and hence

kept "secret" from blocks nested Itlithin the one in which it is

declared.

This example has two parts. The first defines block

structure and ordinary (new) variable declaration. The second

part modifies the definitions for block structure and variable

declaration to include secret variables.

1. Block structure and new variables.

The macros block and new are defined. The effect of

block (x)

is to be equivalent to the ALGOL fragment

begin x end

161

Variables are to be declared using new. The effect of

~ (x)

is to bind identifier x in the top layer of the prog-id

Sec 6.2

component to a cell initialized to undef. The definitions for

block and new are:

~1ACRO: block (x)
set-prog-id (proc, [top:nil, rest:prog-id])i
Xi
set-prog-id (proc, prog-id.rest)

ENDHACRO

HACRO: new (x)
bind-rquote(x), new-cell (undef))

ENm1ACRO

2. Secret variables.

The macro secret, the declarator for secret variables, is

defined in this part. The addition of secret variables

requires that ~ and block be redefined. The strategy used is

the following:

1. Hew variables and secret variables are bound in separate

id-layers of the prog-id component. Secret variables for a

block are to be bound in the top id-layer and new

variables, in the next id-layer (see Figure 6.1a).

2. Upon entry to a block B nested within block A, the id-layer

binding A's secret variables is removed from the prog-id

component and saved until exit from B. Next, a new

id-layer is added to prog-id for the duration of processing

B's declarations (see Figure 6.1b). The only identifiers

bound in that layer are NLAYER and SLAYER. As variable

162 Sec 6,2

prog-id

top

A
'--v---J

A's
secret
variables

.
~

A's new
variables

(a)

entry

to B

prog-id

>

for B's for B's
new secret
variables variables

(b)

~

A's new
variables

"

prog-id

end of B's):->0

declarations

B's new
variables

A's new
variables

(c)

exit

prog-id

A's secret
variables

A's new
variables

(d)

'.

Figure 6.1

Strategy for manipulating the process prog-id
component on block entry and block exit in order to
realize secret variables.

163 Sec 6.2

declarations are encountered new variables are added onto

the id-layer (struct) being built in NLAYER and secret

variables, onto the one being built in SLAYER. After all

of the declarations in B have been processed, prog-id is

set such that top two id-layers in it bind, respectively,

B's secret and new variables (see Figure 6.1c). At block

exit prog-id is restored to as it was prior to block entry:

the two'layers binding B's variables are discarded and the

layer binding A's secret variables is restored (see Figure

6. ld) •

3. This strategy requires that declarations in a block appear

before the "statements". This restriction could be relaxed

in a more sophisticated system which included a "compiler".

The end of the declarations must be signalled to allow the

prog-id component to be set appropriately. Again, in a

more sophisticated system, the signal could be an implicit

one detected by the compiler (see Section 8.2.3). However,

no such compiler is assumed for the oresent situation.

Rather, the macro end-dec is used to explicitly signal the

end of declarations.

4. The identifier SEC ID is bound to a stack designator by the

proc-id component. It is used to "s~ve" the secret

variable bindinqs which are temporarily discarded at block

entry.

164 Sec 6.2

5. The purpose of this example is to demonstrate how the model

can be used to realize the scoping rules for secret

variables. Because processes can directly access their own

state components a process could " cheat" and examine

proc-id.SEC_ID to peek at variables intended to be kept

secret from it. As the model has been defined, there is no

way to prevent a process from doing that. The general

problem of limiting the capabilities of a process is

considered in Chapter 7. Were the model to serve as the

base for an extensible language, this problem would not be

a serious one. Because all language features would be

defined in terms of the model, a language extender could

define his extended language such that proc-id.SEC_ID not

be accessible directly from it and thereby guarantee that

secret variables are truly secret. That is, the compiler

for the language would never produce the code required to

" cheat".

The definitions for block, ~, secret, and end-dec follow. The

macro top-from is de~ined in Section 5.3.3.

t1ACRO: block (x)
push (proc-id.SEC ID, prog-id); //Save secret variables.
set-prog-1d (troc; //Remove secret variables

top:[NLAYER:new-cell(nil), //and set
SLAYER:new-cell(nil)], //prog-id for

rest:prog-id.restlrJ~--- //declarations.
Xi
set-prog-id (proc, top-from(proc-id.SEC_ID))

ENm1ACRO

f'.'1ACRO: nevi (x)
NLAY~:= aug-struct (rval(NLAYER), fyote(x),

nevl~cell(undef
ENDHACRO

165

!1ACRO: secret (x)
SLAYER := aug-struct (rval(SLAYER), frote(x),

new-cell (undef
END~-1ACRO

Sec 6.2

11ACRO: end-dec
set-prog-id

ENDHACRO

(proc,
[top:rval(SLAYER) ,
rest: [top: rval (NLAYER) ,

rest:prog-id. rest]])

These macros require the proc-id component to be of the form

[

SEC ID:new-stack

]

6.3 Functions

Nearly every high level programming language permits

definition of procedures which can subsequently be "called".

This example describes a facility which allows value-producing

procedures, called functions, to be created and subsequently

"applied" • !\1acros to create and to apply functions are

defined.

Before proceeding further, it is useful to develop some

terminology. The expression to be evaluated when a function is

applied is called the body of the function. The collection of

formal parameters of a function is called the bound variable

part (bv-part) of the function. A particular member of the

bv-part of a function f is said to be a bound variable of f, or

166 Sec 6.3

simply a bound variable when it is clear that the function in

question is f. Identifiers appearing in the body of f which

are not bound variables of f are said to be free variables of

f. Consider, for example, the function

g (x, y) = a*x + b*y

The bound variables of g are x and Yi its body is a*x+b*y and

its free variables are a and b.

~~en a function is applied to a collection of actual

parameters its body is evaluated in an environment in which its

bound variables are bound to the actual parameters. That is,

when its body is interpreted, the identifiers comprising its

bv~part are bound by the process prog-id component to the

actual parameters supplied. Programming lanquages display a

variety of methods for treating free variables appearing in

function bodies. This example considers three such methods:

1. Free variables are to be left unbound.

A compiler for a language with this kind of free

variable "binding" could detect function definitions

containing free variables and report them. The effect

would be equivalent to forbidding free variables in

function bodies. The macro functionl (p, b), where p

is a row of identifiers and b is a p-graph, is to build

a function whose bv-part is p and whose body is b. The

macro~ (f, a), where f is a function created by

functionl and a is a row of actual parameters, is to

apply f to a, leaving free variables in the body of f

167 Sec 6.3

unbound.

2. Free variables are to be bound when the function is

applied.

Unless the programmer explicitly states otherwise, LISP

[Mc62] binds free variables in this way. The term

"fluid variable" is sometimes used to refer to a free

variable bound in this way. When this method of

binding is used, a function applied in different places

to the same arguments may produce different values,

even in the absence of side effects. Consider, for

example, the function g defined above. When it is

applied to [1, 1] in an environment in which a and b

are both bound to 1 it produces 2. However, if a is

bound to 1 and b to -1 at the point of application, it

produces O. The macros function2 and apply2 create and

apply functions using this method of free variable

binding.

3. Free variables are to be bound when the function is

created (declared).

ALGOL 60 (Ha63], PL/l [IB:-169] and PAL [Ev68] bind free

variables in this way. Ivhen this method of binding is

used a function applied in different places to the same

arguments produces the same values, in the absence of

side effects. The macro function3 creates a function

whose free variables are bound as it is created. The

macro apply3 is used to apply such a function.

168 Sec 6.3

The following strategy is used to define the "function"

and "apply" macros:

1. Structs are used to represent functions. Those created by

functionl (p, b) and function2 (p, b) are represented by

structs of the form

p b

A function built by function3 includes, in addition to its

bv-part and body, bindings for its free variables. The

function created by function3 (p, b) is represented by a

struct of the form

where p-id is the value of the process prog-id when the

function is created.

2. The "apply" macros all use the macro eval defined in

Section 5.3.3. Each first constructs an id-layer which

binds the bound variables of the function to the values

supplied for the actual parameters. Then, each uses eval

to evaluate the body of the function with the appropriate

prog-id. The three "apply" macros differ only in the

prog-id they supply to eval. Use of eval requires that the

proc-id component include the identifier EVAL STACK and

that the rp conponent be prepared to perform "returns" as

169

described in Section 5.3.3.

Sec 6.3

3. The "apply" macros use an auxilary macro make-layer. The

value of make-layer (P, A), where F is a row of identifiers

and A, a row of values, is an id-layer (struct) in which

the identifiers of F are bound to the corresponding

components of 1'>..

The macro definitions follow.

I-1ACRO: make-layer(F, A)
let IDL - new-cell (nil);

i = new-cell (0)--
in
lOr i = 1 to length (F) do
---IDL := aug-struct (rvar(IDL), F[i], A[i]);
rval (IDL)

ENDMACRO

:1ACRO: functionl (p, b)
[bv: p, body: b]J

ENDHACRO

MACRO: a1~lYl (f, a)
eval.body, [top:make-layer(f.bv, a),

rest:nil])
ENDMACRO

[{ACRO: function2 (p, b)
[bv: p, body: b]

ENDMACRO

!·1ACRO: apPly2 (f, a)
eval (f.body, [top:make-layer(f.bv, a),
---- rest:prog-id])

ENDMACRO

~ffiCRO: function3 (p, b)
[bv:p, body:b, free_var:prog-id]

ENDMACRO

~ffiCRO: a1rl t 3 (f, a)
eval. ody, [top:make-layer(f.bv, a),
----- rest:f.free var])

ENDf<.1AC RO -

170

6.4 Dijkstra's Semaphores and Parallel Begin

Sec 6.4

Dijkstra [Di6Ra] has suggested an extension to ALGOL 60 to

permit description of parallelism of execution (see Section

1.2.3). He proposes use of "parbeqin" and "parend" to bracket

statements to be executed in parallel. The entire construction

between the brackets is to be regarded as a single compound

statement vlhose execution is completed when execution of all

its constituents is completed. Thus,

begin
Sl:
parbegin S2; S3; S4 parend;
S5

end

specifies that after completion of Sl, statements S2; S3 and S4

are to be executed in parallel; and only after all of them are

finished is S5 to be executed.

Dijkstra v in addition, proposes semaphores, together with

two primitive operations v and p, as a means for synchronizing

processes created by parbegin. A semaphore is a special

purpose integer=valued variable whose value is constrained to

be non-negative. The effect of the v operation on a semaphore

is to increase its value by 1. The v operation is

"indivisible" in the sense that two processes simultaneously

attempting it on the same semaphore perform it sequentially in

an unspecified order. The effect of the p operation on a

171 Sec 6.4

..

semaphore is to decrease its value by 1 as soon as the

resulting value would be non-negative. The p operation

represents & potential delay. If the value of semaphore S is

not positive when a process initiates p(S), the p operation can

not be completed until another process perform a v operation on

S.

Several processes using the same data base can insure that

only one of them accesses it at any time by agreeing to use a

binary semaphore b (bls value must be either 0 or 1). Each

agrees to perform p(b) before accessing the data base and v(b)

upon completion of the access. In an analogous manner a group

of processes can use a general semaphore g, whose value is

restricted to the range O(value(g)~n, to insure no more than n

of them are engaged in a particular activity at any time. Each

process agrees to perform p(g) before starting the activity and

v(g) immediately upon completing it.

The macros parblock u semaphore, ~ and £ are defined for

this example. The effect of parblock (x), where x is a row of

p-graphs, is to be equivalent to

parbegin x[l]~ x[2]~ ••• ~ x[length(x)] parend

The macro semaphore (S, n) declares identifier S to be a

semaphore with initial value n. The ~ and v macros correspond

to the p and v operations. To provide context for these

macros, assume they are to be used with the macros block and

new as defined in the first part of Section 6.2.

172 Sec 6.4

The strategy to be used in defining the macros is the

following:

1. When a process P performs parblock it creates a new process

for each of the p-graphs to be executed in parallel. Next,

it waits inactive until each process it has created reports

completion. ~fuen a process created by P completes its

task, it informs P and terminates.

2. A semaphore is represented by the designator for a struct

of the form

1front

The val component is the "value" of the semaphore. If it

is zero when a process attempts a p operation, completion

of p is delayed. Designators for processes awaiting

completion of the p operation on the semaphore are held in

the q component. The lock component is used to insure that

only a single process accesses the val component at any

time.

3. To perform the p operation on semaphore S, a process first

performs t-set on S.lock until it succeeds. If S.val is

positive it decrements it by 1, clears S.lock (i.e., sets

it to 0) and continues. Otherwise, it places its process

designator at the end of S.q, clears S.lock and sets itself

inactive to await completion of the P operation.

173 Sec 6.4

4. To perform the v operation on semaphore S, a process first

locks S.lock (using t-set until it succeeds). Next, if no

processes are waiting completion of a p operation on S, it

increments S.val by 1. Otherwise, it notifies the process

whose designator is the first item in S.q of completion of

its p operation and advances S.q. Finally, it clears

S.lock.

5. The identifiers NSONS and FATHER are bound in the proc-id

component of each process P. FATHER is the designator of

the process that created P. NSONS is the number of pIS

descendents which have not yet reported completion.

6. The conventions extablished for the interactions that occur

between processes make use of three levels:

2: Processes perform their normal activities at level 2;

in addition, a process expects completion notifications

from its descendents to appear in its ~(2) component.

3: A process expects notification that it can complete a p

operation it initiated to appear in its ~(3) component.

4: Processes use level 4 to await the completion of

descendents and of p operations.

When a process must wait, either for permission to complete

a p operation or for its descendents to complete, it uses

the set-level-inactive operation to simultaneously increase

its level from 2 to 4 and set its aflag to false. Use of

set-level-inactive prevents races by insuring that the

process can not be interrupted by a completion notification

174

until it becomes inactive (see Section 4.6).

The job of the rp component for each process is to

Sec 6.4

terminate it after reporting completion of its task to its

creator; it is:

§ interrupt (proc-id.FATlIER, 2, nil);
terminate •

IIReport completion
Iland terminate.

The ~(2) component is responsible for responding to

notification from a descendent that it has completed its task;

it is:

9 proc-id.llSONS := rval(proc-id.NSONS)
iff ~ (0, rval(proc-id.HSONS)) do

--(~ump12T7aflag :- true;
~(2).level :=~

advance 1CIT2));
set-status (proc, dump(2)) ~

- 1;
Illf all sons have
Ilcompleted, prepare
lito resume.

Response to notification that a p operation it has initiated

has completed is handled by the hp(3) component of a process;

it is:

§ advance (st (3)) ;
gump (3).aflag := ~;
ump(3).level := 2;

set-status (proc, dump (3)) •

The macro defintions are:

~ffiCRO: parblock (x)
let X - x;

N = length (X);
T = new-cell (undef);
i = new-cell (0)

in
proc-id.NSONS := H; IISet number of descendents.

175 Sec 6.4

IICreate each descendent.

IIWait for descendents
lito finish.

IISet state components
Ilfor descendent

for i = 1 to N do
TT := new:proc;

set-prog (rval (T), X[i]);
set-level (rval(T), 2);
set-aflag (rval(T), true);
set-prog-id (rval(T), 11".rest" because don't

~-id.rest); Ilx,N,T,i in prog-id of
set-proc-id (rva (T), [NSONS:new-cell(O),

---- FATHER:procnr-;
set-rp (rval(T), EE);
set- hp (rva1 (T), 2, ~ (2)) ;
set-hp (rval(T), 3, hp(3));
release (rval(T)));

set-level-inactive (4)

want
T.

t1ACRO: semaphore (8, n)
bind (quote(S), [val:new-cell(n),

lock:new-cell(O) ,
q: nevi-queUe])

ENDMACRO

11ACRO: o(S)
untiT t-set(S.lock) do null;
if ~ (0, rval(S.vaIT)--

then (enfueue (S.q, proc);
S. ock := 0; --
set-level-inactive (4))

else S.val:= rval (S.val) -1;
S.lock :=0)

ENDMACRO

II"Lock" S.
IIIs S positive?
IINo, must wait to
Ilcomplete P.

IIYes, decrement S
Iland continue.

HAC RO : v (S)
until t-set (S.lock) do null;
if ~ (0, length (S.q» ~/Processes awaiting P completion?
-then S.val:- rval (S.val) + 1; IINo, increment S.

else (interrup~.q[l], 2, nil); IIYes, inform process
advance (S.q)); Ilof p completion.

S.lock := 0
ENDHACRO

6.5 Backtracking

In many situations problems arise which can be usefully

represented by "search trees" whose non-terminal nodes

represent choice points and whose terminal nodes represent

176 Sec 6.5

potential solutions. A solution to such a problem can be found

by traversing the corresponding tree, beginning at its root,

until a satisfactory terminal node is encountered.

Floyd [F167] has proposed a programming technique making

it easy to write programs to solve such problems. His

technique includes an automatic backtracking facility. In

effect, Floyd proposes two operations:

choice, which chooses one branch to traverse from the group

departing from a non-terminal node in the search

tree; and

backup, which "undoes" everything done since the last choice

including the choice itself.

For this example macros for choice and backup are defined.

The value of the expression

choice (n)

is to be an integer c such that l<c<n. If, at some time after

it is made, a choice is found to be a bad one, it can be

"remade" using backup. Interpretation of backup causes

"execution" to return to the point of last choice where the

choice is remade. Then, execution continues from that point as

if the choice had been made for the first time. In particular,

storage operations performed after the unsuccessful choice and

prior to the backup are "undone". If all choices from the

given choice point have been tried, backup causes the choice at

the previous choice point (if any) to be redone. That is,

choices may be nested.

177 Sec 6.5

The macros choice and backup are defined using the

following strategy:

1. Interpretation of backup causes the pc, prog, stack and

prog-id components to be reset as they were at the previous

choice point. Prog and pc are set to the values they had

immediately after the unsuccessful choice. The prog-id

component is set to a complete copy (see Section 5.3.4) of

the prog-id as it was at the choice point. And, the stack

is set to a complete copy of the stack component as it was

immediately after the unsuccessful choice, with the

exception that the top item is the new choice rather than

the unsuccessful one. Installating complete copies of the

stack and prog-id components insures that all storage

operations are undone. It is important that stack and

prog-id be copied "together" to insure that the copies

exhibit the same sharing properties as the originals. For

example, suppose identifier x is bound in the prog-id to be

copied to an Ivalue which is also the 6th item in the stack

to be copied. It be crucial that x be bound in the copy

prog-id to the Ivalue which be also the 6th item in the

copy stack. Note that state components other than prog,

pc, stack and prog-id are not restored by backup. An

assumption made in defining the choice and backup macros is

that processes using them do not change state components

other than their prog, pc, prog-id and stack. The macros

could, if desired, be defined such that other state

components were restored also.

178 Sec 6.5

2. The first choice made for choice (n) is n. :~ew choices are

made, as often as necessary, by subtracting 1 from the old

one, until the last choice, 1, is made.

3. When choice (n) is interpreted preparation for the first

backup is made by saving the values of the prog and pc

components and by saving complete copies of the stack and

prog-id components. Next, n, the first choice, is nushed

onto the stack.

4. If not all paths of the tree have been traversed when

backup is performed, the following actions are taken:

a. If the new choice is not the last one for the most

recent choice point (i.e., if it is not 1), preparation

for the next backup is made. Prog and pc values for

the choice point and copies of the stack and nrog-id

components, as they were at the choice point, are

saved.

b. If the new choice is the last one for the most recent

choice point, preparation for the next backup need not

be made. Preparation for it has been made at the

choice point occurring before the most recent one.

c. The prog, pc, stack and prog-d components are set to

perform the backup.

If every path of the tree has been traversed, there is no

solution to the problem and an error situation arises. In

a "real" application appropriate action could be defined.

179 Sec 6.5

5. The definitions for choice and backup use the identifiers

CONTROLS, STACKS and PROG_IDS which are bound in the

process proc-id component. These identifiers are bound to

designators for stacks which are used to hold values saved

for the control, stack and prog-id components,

respectively. The identifiers S, P and C, which are used

for temporary storage, are also bound in the proc-id

component.

6. The macros top-from, make-control, stack-comp-copy and copy

are used. Definition for the first two macros are to be

found in Section 5.3.3 and, for the remaining two, in

Sections 5.3.1 and 5.3.4, respectively. To use copy the

hp(lmax-l) state component must be defined as in Section

5.3.4.

Definitions for the Macros follow.

(n)
1)

HACRO: choice
if ~ (n,
tnenL
erse
(let S = stack-comp-copy;

T =~ ([STACK:S,
p_ID:prog-id.rest])

in
push (T.STACK, n-l);
push (proc-id.STACKS, T.STACK);
PUS? (proc-id.PROG IDS, T.P_ID);
pusn (proc-id.CONTROLS,

make-control(prog, EXIT»;
n;
EXIT => null

EUDr1ACRO

//Copy stack and prog-id

//Prepare for the
//first backup.

//Hake first choice.

180

nACRO: backup
iff ~ (0, length(proc-id.STACKS)) do ERROR;
proc-ra.s :- top-from (proc-id.STACKS);
proc-id.P := top-from (proc-id.PROG IDS);
proc-id.C := top-from (proc-id.COlJTROLS);
unless ~ (1, trval(proc-id.S) [1]) do
(let T =~ ([STACK:rval(proc-id.ST,

p_ID:rval(proc-id.P)])
in
pop (T.STACK);
push (T.STACK, (rval(proc-id.S)) [1] - 1);
push (proc-id. STACKS , T.STACK);
push (proc-1d.PROG IDS, T.P ID);
push (proc-id.CONTROLS, rvaI(proc-id.C)));

set=Stack (proc, rval(proc=!d7S));
set-orog-id-rProc;:rval(proc-id.P));
set-~ontrol (proc, rval(proc-id.C))

ENDHACRO

6.6 Non-deterministic Programming

Sec 6.5

//Failure.

//Prepare for
//next backup.

//Backup.

This section suggests an alternative approach to the

problem described in Section 6.5. The operations choice and

backup v defined in Section 605 v can he used to traverse a

"problem" tree. At each non-terminal node first one branch and

then another is followed until a satisfactory terminal node is

encountered. Using this approach the tree is traversed in a

strictly sequential manner, each path being investigated in

turn.

The behavior that results from the alternative approach is

reminiscent of that exhibited by non-deterministic automata.

Whenever a non-terminal node in the tree is encountered, a

separate process is created to follow each branch departing

from it. Should a process find that the path it is following

leads to an unsatisfactory result, it terminates. If the path

181 Sec 6.6

it follows leads to a satisfactory result, the process reports

the result and processes working on other paths terminate.

~his approach, for which paths are investigated concurrently,

results in a non-sequential tree search.

The non-determinis~ic behavior can be described using the

macros eval-nd, choice and failure. To indicate that an

expression is to be evaluated non-deterministically a process

uses eval-nd. After process M performs

eval-nd (e)

it waits for a newly created process P to evaluate e for it.

If P successfully evaluates e, it notifies M of the result.

Should it be unable to evaluate e (i.e., if all paths in the

tree lead to unsatisfactory results), P notifies !·1 that e is

undefined. When a path is discovered to lead to an

unsatisfactory result, the process following it performs

failure. The effect of failure is to first inform the creator

of the process and to then terminate the process. When a

process Q performs

choice (n)

it creates n new processes Cl, ••• , Cn, each of which

represents a different choice. Each of the Ci then proceeds

with the evaluation with a different value for the choice while

Q waits for failure notifications from the Ci. If all Ci fail,

Q notifies its creator and terminates. Should a process Ci

follow a path leading to a satisfactory solution, it notifies P

(the process created to evaluate e for ~1) of its success and

182 Sec 6.6

terminates. P then notifies M of the successful result,

arranges for processes still following paths to terminate and

finally terminates itself. The three macros are defined to

allow nesting of eval-nd.

The explanation of the strategy used to define the macros

uses ~. P. Ci and Q to denote processes. ~1 is used to denote a

process performing eval-nd, P to denote the process created to

carry out the non-deterministic evaluation for !1, and Ci to

denote a process created by the choice operation. Q is used,

whenever appropriate, to denote an arbitrary process.

The strategy is the following:

1. The conventions established for interactions between

processes performing the non-deterministic evaluation make

use of five levels:

5: This level is used by processes for awaiting the

occurrence of interactions with other processes. M

waits for the result of the non-deterministic

evaluation. Arbitrary process Q awaits "notification

from its Ci.

4: Q expects failure notifications from its Ci to appear

in its ~(4) component.

3: P expects notification from a successful Ci to appear

in its ~(3) component.

2: This level is used by processes for performing their

internal activity. In addition, ~ expects P to olace

the result of the non-deterministic evaluation in its

183 Sec 6.6

q(2) component.

1: Q expects termination orders to appear in its ~(l)

component.

To avoid potential race situations processes use the

set-level-inactive operation to change from level 2 to

levelS (see Sections 4.6 and 6.5).

2. Should a process receive an order to terminate it must be

able to order its descendents to terminate. By creating

each Ci such that its ~(l) component is the designator for

the same queue, a process P can avoid maintaining a table

of its Ci. By placing an item in that one shared queue, P

can interruot all its Ci simultaneously ordering them to

terminate.

3. To perform eval-nd (e) process a

a. prepares to receive the result of the non-deterministic

evaluation by setting its own hp(2) component;

b. creates process P to evaluate e and releases it; and

c. sets itself inactive to await notification from P of

its result.

When P is created its prog component is set to e. Its

hp(l) component is set to respond to terminate orders and- -
its ~(3) component, to respond to success notifications

from Ci it subsequently creates.

4. To perform choice (n) a process Q

a. prepares to respond to failure notifications from the

184 Sec 6.6

processes it is about to create by setting its own

~(4) component;

b. creates n processes Cl, ••• ,Cn and releases them.

c. sets itself inactive to await failure notification

from the Cia

The ~(l) component of each Ci is set to respond to

terminate orders.

5. To perform failure a process first notifies its creator and

then terminates. Should process Q interpret its prog in

its entirety, the path it is following has led to a

satisfactory terminal node and the top item in its stack

component is the value of e. In such a case, Q's rp

component notifies P and then terminates Q.

6. Process Q responds to a failure notification from one of

its Ci by decrementing a count it keeps of the number of

its Ci which have not yet reported failure. If all of its

Ci have failed, the action Q takes depends upon whether the

choice which created its Ci corresponds to the root node of

the problem tree. If the choice does correspond to the

root then Q is P, all paths have been investigated and no

solution to the problem exists. In such a case, Q notifies

H of that fact and terminates. When Q is not P, it

notifies its creator of its failure and terminates.

7. The identifiers SONS_Q, FATHER, NSONS, SPROC and ROOT are

bound in the proc-id component of each process Q. SONS=Q

185

is bound to the designator for the queue used as the ~(l)

component of Q's Ci. FATHER is the designator of the

process that created Q, LJSONS, the number of Q's Ci which

have not yet reported failure and SPROC, the designator of

process P. rtOOT indicates whether Q is P.

8. A number of auxilary macros are used:

a. stack-comp-copy (Section 5.3.1), copy (Section 5.3.4)

and top-stack (Section 5.3.4);

b. hpl,~, hp3, hp4 (to be defined) whose values are

p-graphs used for the ~(1), •••~(4) components of

processes created by choice and eval-nd.

Co ndrp (to be defined) whose value is a p-graph used for

the rp component of processes created by choice and

eval-nd.

d. terminate-sons (to be defined) which is used by a

process to order its Ci to terminate.

The macro definitions follow.

H1\CRO: ndrp
~ interrupt

terminate
END~1ACRO

liP-graph for rp component of processes
(proc-id.SPROC, 3, top-stack);llcreated by choice
j Iland eval-nd.

BACRO: hp~
§ term~nate-sons

terminate •
ENDHACRO

liP-graph for hp(l); responds
Iiterminate orders.

Ilhp(2) for M; accepts result from P
IIPlace result on stack.

Iv1.ACRb: hp2
~ ~(2) [1];

advance (q(2))i
dump(2).a~lag := true; IIPrepare
dump (2) .level :=~ ..
set-status (proc, dump(2)) §

ENDHACRO

to become active.

186 Sec 6.6

MACRO: ~ Ilhp(3) for P; responds to success notice.
§ interrupt (proc-id.FATHER, 2, s.(3) [1]); IINotify H.

terminate-sons; I/Terminate
terminate' I/remaining Ci.

END~1ACRO

HACRO: hp4 liP-graph for hp(4); responds to
I/failure notices from Ci.

§ proc-id.NSONS := rval (proc-id.NSONS)
unless ~ (0, rval(proc-id.llSONS) do

(advance (qT4Jr;
set-status (proc, d~~~(4»)

if proc-id.ROOT - --
then interrupt (proc-id.FATHER, 2,
else failure;

termInate •
ENDMACRO

1;
//Not the last Ci,
//wait for further
Iinotice.
I/The last Ci.

undef)

rffiCRO: terminate-sons
enqueue (proc-id.SONS Q,

nil) -
ENDHACRO

//Order Ci terminate by
/Icausing a level 1
/Iinterrupt to occur.

/IRelease P.
I/Wait for result from P.

in
set-hp (proc, 2, hp2);
set-prog-rP; e) ;
set-level (P, 2);
set-stack (P, T.STACK);
set-prog-id (P, T.P ID);
set-proc-id (P, [ROOT:true

FATHER:nroc,a-
SPROC:P,
NSONS:new-cell (0),
SONS_Q: nm"-'1ueue]) ;

set-rp (P, Idr~);
set-hp (P, ,~);
set-hp (P, 3, ~);
set-q (P, 1, proc-id.SONS Q);
release (P); -
set-level-inactive (5)

END~1ACRO

~ffiCRO: eval-nd (e)
let S = stack-comp-copy;

P = new-proc; I/Create P.
T = copy ([STACK:S, //". res t ll because don't want

P_ID:prog-id.restU) I/S,P,T in T's prog-id.
I/Prepare to receive
//result from P.

HACRO: failure
interrupt (proc-id.FATHER, 4, nil);
terminate

ENDHACRO

187 Sec 6.6

//Create the n Ci.

//Prepare for
//notification from Ci.

;ffiCRO: choice (n)
let S - stack-comp-copy:

PROG_ID = lrot-id.rest:
T = new-ce I undef):
Ci - new-cell (undef):
N = n:
i = new-cell (0)

in
set-hp (proc, 4, hp4):
proc-id.NSONS := n:
for i-I to n do
TCi : = neW=pro'CT

set-control (rval(Ci), //Set Ci's state.
make-control (prog, EXIT);

set-level (rval(Ci), 5): ~
T := (opy ([STACK:S, P_ID:PROG_ID]):
push T.STACK, i):
set=stack (rval(Ci), T.STACK):
set-prog-id (rval(Ci), T.P_ID):
set-proc-id (rval(Ci), [ROOT:false,

---- FATHER:proc
SPROC:p~id.SPROC,
NSONS:new-cell(O),
SONS Q:new-queue]):

set-rp (~(Ci), ndrp): -
set-hp (rval(Ci), 1, hpl):
set-q (rvaITCi), 1, rroc-id.SONS Q):
release-rrYal(Ci»: //Release Ci.

set-level-inactive (5): //Await failure notification.
EXIT ::;. null

:CNDHACRO

6.7 Fisher's Control Primitives

Fisher [Fi70] has isolated seven operations which he

considers suitable to serve as "control primitives" for

constructing larger control structures (see Section 1.2.5).

This section defines a set of macros which correspond to his

primitives.

Fisher's control primitives are:

188

1. seq (xl, x2, ••• , xn)

Expressions xl through xn are to be evaluated in order,

from left to right. The value of the "sequence"

expression is to be the value of xn.

2. cond (pI, el, p2, e2, ••• , pn, en)

Beginning with pI and proceeding from left to right

every other operand (i.e., pI, p2, etc.) is to be

evaluated until one produces the value true. The value

of the "conditional" expression is taken to be the

value of the ei corresponding to the pi whose value is

true. Should no pi have value true, the value of the

entire expression is taken to be undef.

3. par (xl, x2, ••• , xn)

Expressions xl through xn are to be evaluated

concurrently. No commitment'is made concerning the

relative speeds of their evaluation; hence, there is

no commitment concerning the chronological order of

their side effects, if any. The value of the

"parallel" expression is to be the value of xn and is

to be "available" only after all xi have been

evaluated.

4. synch (c, xl, x2)

The synch operation provides a locking mechanism which

can be used to achieve coordination, synchronization

and mutual exclusion. The expression c is to be

evaluated first. Its value must be a "construct", a

special kind of structure similar to a struct

189 Sec 6.7

(constructs are discussed later). If no other process

is currently engaged in a synch operation "on" that

construct, xl is to be evaluated. Otherwise, x2 is to

be evaluated. The value of the "synchronization"

expression is taken to be the value of whichever

expression, xl or x2, is evaluated.

5. monitor (s, c, r, v, x)

Arguments s, c, r and v are to be evaluated first. The

value of s must be a selector (S), that of c, a

construct (C) and that of r a relational operator (R).

No restrictions are placed on the value (V) of v. The

value of the "monitor" expression is the designator for

a process that continuously monitors for the condition

R (sel(C, S), V)

where sel is the selection operator for constructs. If

ever that condition holds, the monitoring process

evaluates x and then terminates.

6. unmonitor (p)

A monitoring process continues until either the

condition obtains and x is evaluated or it is

explicitly terminated by the unmonitor operation. The

effect of unmonitor (p) is to terminate the monitoring

process designated p.

7. cont (x)

This operation is based upon the notion of "relative

continuity". A process P is said to be continuous with

respect to another process Q if all of its actions

190 Sec 6.7

occur between (two) consecutive state transitions of Q.

~vhen the "continuous" expression cont (x) is evaluated,

the evaluation of x is to be continuous relative to all

other processes (not themselves in the midst of a

cont).

In the absence of monitor operations the effect of cont is

straightforward. Whenever process P performs cont (x) all

other processes "pause" while P evaluates x. After x has been

evaluated, the processes that paused continue.

The monitor and cont operations interact in a subtle way.

The notion of cont-depth is useful in explaining that

interaction. Each process can be thought of as having a

cont-depth associated with it. Evaluation of a program written

with Fisher's primitives begins with a single process whose

cont-depth is O. Each time a process initiates a cont

operation its cont-deoth is incremented by 1 and when it

completes the operation its cont-depth is decremented by 1.

The value for the cont-depth of a newly created process in

inherited from its creator. The definition for the cont

operation can be reformulated in terms of cont-depth as

follows:

When process P whose cont-depth is D initiates

cont (x), its cont-depth becomes D+1 and,

simultaneously, all processes with cont-depth less than

D+1 pause. Those with cont-depth greater than Dare

uneffected. After P evaluates x, its cont-depth is

191 Sec 6.7

reset to D, at which point the processes that paused

resume their activities.

In the absence of the monitor operation all processes which are

active must have the same cont-depth.

Hhen a monitor operation is embedded within a cont

operation it is poss ~le for processes having different

cont-depths to be active simultaneously. Consider, for

example, a process P which evaluates

seq (cont (............... moni tor (••• ,x).........--) ,
Q)

cont(~ cont(----)----),
® . Q)

and suppose that when the seq operation is initiated its

cont-depth is D. The process M created by the monitor

operation within cont0 has cont-depth D+l, which is pIS

cont-depth when H is created. Hhen contQ) is completed, pIS

cont-depth is reset to D, while MIS remains D+l. When P

performs cont @ M is uneffected. However, M must pause while P

performs cont @.

The definition of the monitor operation is such that

should the condition being monitored become true, all processes

192 Sec 6.7

whose cont-depth is less than that of the monitoring process

must pause while the expression which is the right most operand

of the monitor operation is evaluated. For the above example,

assume that the three cont operations shown are the only ones.

If P is engaged in evaluating a sub-expression appearing in the

parts labeled A when the condition M monitors obtains, P must

pause while expression x is evaluated. If, on the other hand,

P is engaged in evaluation of cont@ when the condition

obtains, it is uneffected. A monitor operation embedded within

a cont operation, as in this example, can approximate the

effect of an interrupt mechanism. ~ihen the monitored condition

becomes true, certain processes are "interrupted" while the

appropriate expression is evaluated.

For this section a set of macros corresponding to Fisher's

primitives is defined. The macros synch, monitor, unmonitor

and cont are identical in effect to Fisher's primitives of the

same name. Unlike Fisher's counterparts, the macros ~, cond

and par take only a single argument. The effects of the macros

~ (x), cond (x) and par (x), where in each case x is a row of

p-graphs, are to be equivalent to Fisher's

seq (x[l], x[2], ••• , x[length(x)])

and

cond (x [1], x [2], ••• , x [length (x)])

and

par (x[l], x[2], ••• , x[length(x)])

respectively.

193 Sec 6.7

In addition to the seven control macros, two macros, ~

and sel, for manipulating constructs are defined. Constructs

are similar to structs, the difference being that constructs

have "locks" (used by synch) associated with them. The macro

cons (x), where x is a row whose odd components are selectors

and whose even components are values, creates a construct

according to specification x. The value of sel (c, s) is to be

the s component of construct c.

The cont operation and its interaction with the monitor

operation represent the major difficulty in defining these

macros. The strategy used is the following:

1. A table, TABLE, accessible to all processes, is maintained.

When a process is created (by monitor or par) an entry,

consisting of its designator and cont-depth, is made for it

in TABLE. When a process terminates (as the result of

unmonitor or completion of a parallel path) its TABLE entry

is removed. The entry for a process always contains its

current cont-depth. To perform cont (x), process P,. _.
consults TABLE for a list of processes which should pause

while it evaluates Xi it arranges for each such process to

pause, evaluates x, and then arranges for each to resume.

It is important that no changes to TABLE be made between
,
the time P begins to generate the list of processes and

completes arrangements for them to pause. To insure that,

processes access TABLE through a lock. The following

auxilary macros are used to manipulate TABLE:

194 Sec 6.7

a. add-entry (P), rem-entry (P): P is a process

designator. The effect of add-entry is to add the

entry (P, D) for process P to TABLE, where D is the

cont-depth of the process performing add-entry. The

effect of rem-entry is to remove pIS entry from TABLE.

Both macros access TABLE through its lock.

b. incr-depth (n), decr-depth (n): n is an integer.

These macros respectively increment by n and decrement

by n the cont-depth of the process performing them by

changing the entry for the process in TABLE. Both

access TABLE through its lock.

c. lock-table, unlock-table: Operations to explicitly

lock and unlock TABLE.

The operation to lock TABLE is such that once initiated it

is not completed until TABLE is locked. Neither the format

of TABLE nor the above six macros are defined beyond the

above description.

2. The macros seq and cond are straightforward. Definitions

for them use the macro eval (defined in Section 5.3.3).

3. Constructs are represented by structs of the form

} struct corresponding to
the "structure" of
the construct

195 Sec 6.7

To perform synch (c, xl, x2) a process first performs

t-set (c.lock). If the t-set succeeds, xl is evaluated

using eval and then c.lock is reset to O. If it fails, x2

is evaluated using eval.

4. Hhen a process performs par (x) it first creates a separate

process for each of the components of x. Then, it waits

for those processes to evaluate the components of x. \vhen

the process for x[i], for i ~ length (x) , finishes, it

notifies P and terminates. vlhen the one for x[length(x)]

finishes, it passes P the value it has computed and

teminates. After all have completed, P pushes the value of

x[length(x)] onto its stack.

5. An auxilary macro contl (x, n) is used in the definitions

for both cont and monitor. It represents a generalized

cont operation which increments the cont-depth of a process

by n rather than by 1. The following actions are taken by

a process P with cont-depth D to perform contl (x, n):

a. TABLE is locked;

b. P increases its cont-depth to D+n;

c. P uses the auxilary macro cont-list to build a list of

processes with cont-depth less than D+n. The effect of

cont-list(S), where S is a stack designator, is to push

the designators for such processes onto stack S. (No

further definition for cont-list is to be given.);

d. P interrupts each process in S, requesting it to pause,

and then waits for each process so requested to

196 Sec 6.7

acknmvledge.

e. TABLE is unlocked;

f. x is evaluated using eval;

g. P decreases its cont-depth to D and informs each

process whose designator is in S that it may resume.

6. To perform cont (x) a process performs contI (x, 1).

7. To perform monitor (s, c, r, v, x) process P creates

another process M dedicated to repeatedly testing the

condition, and then pushes Mis designator onto its own

stack. If ever the condition becomes true, H performs

contI (x, 0) (see 5) and then terminates. To perform

unmonitor (Q), process P interrupts Q requesting it to

terminate.

8. The conventions established for interactions between

processes make use of six levels:

1: unmonitor requests appear in ~(l);

2: requests to pause while another process performs cont

appear in Sl. (2) ;

3: processes perform their normal activity at level 3;

permission to resume after a ~ is completed appears

in s.(3);

4: termination notices from processes created by par

appear in s.(4);

5: acknowledgements from processes receiving pause

requests, indicating that they have paused, appear in

g,(5);

197 Sec 6.7

6. A process waits for interactions from other processes

to occur with its level set to 6.

The macros ~, hp2, ~, hp4 and hp5 (to be defined)

specify the handler-prog components that respond to

requests appearing in the various queues.

9. When a process is created its rp component is set such that

a. it can use the eval macro (see Section 5.3.3); and

b. \vhen all nested "evals" have been completed

i. if created by monitor it removes its entry from

TABLE and terminates, and

ii. if created by par it notifies its creator,

removes its entry from TABLE and terminates.

The macro !EE specifies the p-graph for such a reserve

program.

10. The proc-id component of each process P binds the

identifiers TABLE, EVAL_STACK, NPATHS, FATHER and VALUE.

TABLE is the table of processes and EVAL_STACK is the stack

used by evaL If P is a "monitor" process FATHER is undef;- -

otherwise, it is the designator of the process that created

P. NPATHS is the number of processes created by P using

ear which have not yet completed. P uses VALUE to hold the

value passed to it by the "value producing" process created

by par vlhi Ie it a\vai ts completion of the other "par"

processes. If P itself was created by ear its proc-id also

includes the identifier LAST. LAST is true if P is the

198 Sec 6.7

"value producing" process and is false otherwise.

The macro definitions follow.

//Build "structure"
//part of construct.

//Macro to build a construct.

~(length(x), rval(i» do
:= aug-struct (rval(S), XTrval(i)],

x[rval(i)+lrr:-
2);
value:rval(S)]

i := rval(i) +
l[lock: new=ceIl (0) ,

ENDHACRO

~1ACRO cons (x)
let~ new-cell (nil);
--- i = new-cell (IJT
in
until

(S

HACRO: sel (c, s)
sele~(c.value, s)

ENDHACRO

//Macro to select component
//of construct.

HACRO: ~ (x)
let 1 = new-cell (0)---1n
for i = 1 to length (x) do

eval (X[i], prog-id7rest)
ENmmCRo-

l1ACRO: cond (x)
let ~new-cell (1)---1n
until gr(length(x), rval(i) do

(ifr-eval(x[rval(rrT; pro~id.rest) do
---(eval(x[rval(i)+l], prog-id.restT;

nextis EXIT);
i := rval(i) + 2);

undef -
EXIT:> null

ENDHACRO

r1ACRO: synch (c, e, f)
if t-set(c.lock)
then (eval (e, prog-id); c.lock := 0)
else eval(f, prog-id)

ENDMACRO .

199 Sec 6.7

rmCRO: init-state (p)
set-level (p, 3)
set-prog-id (p, prog-id.rest);
set-aflag (p, true);
set-rp (p, frpr;--
set-hp (p, 1, hpl);
set-hp (p, 2, ~);
set-hp (p, 3, IiP"3");
set-hp (p, 4, hp4);
set-hp (p, 5, ~)

ENDHACRO

//Used by par and monitor to
//initialize-state components
//of processes they create.

HACRO: par (x)
let N = length (x);

P = new-cell (undef);
i = new-cell (0)

//Wait for sons to complete.

//Create N soms.

in
proc-id.NPATHS := H;
for i = 1 to N do
TP := new=j?'roc;

add-entry (rval (P)) ; / /t1ake TABLE entry.
set-prog (rval(P), x[i);//Set state components.
set-proc-id (rval(P), [NPATHS:new-cell(O),

FATHER:proc,
VALUE:new-cell(undef) ,
LAST :~ (i, 1'1),
TABLE:proc-idTABLE,
EVAL_STACK:new-stack]) ;

init-state (rval(P»;
release (rvaITPf));

set-level-inactive (6)
ENDHACRO

t1A.CRO: unmonitor (p)
interrupt (p, 1, nil)

ENDMACRO

t~CRO: contI (e, n)
let p list = new stack;
--- p-count = new-cell (0);

i-= new-cell (0)
in
IOck-table;
incr-depth (n);
cont-list (p_list);

//Increment cont-depth.
//Form list of processes

IIEvaluate x.
do IIAllow process to resume.
3; 0); pop (p_list)

200

p_count := length (p_list);
for i = 1 to rval(p count) do
--- interrupr-Tp Tist[il ,~,
iff rval(p count)-> 0 do

-;eE-level-inactive-r6);
unlock-table;
eval (e, prog-id.rest);
lliiITl ~ (0, length (p list))

(~nterrupt (p_llst[ll,
ENDHACRO

Sec 6.7

Iithat are to pause.
IIRequest processes to pause.

P/IC
) ;

Wait for acknowledgement.

I'1ACRO: cont (e)
cont--re; 1)

END1'1ACRO

!,1ACRO: moni tor (s, c, r, v, e)
let M - new-proc IICreate monitor process •...--
~n

aad-entry (T);
set-prog (T, ~let VAL = v; IISet its prog.

--- CONSTRUCT = c
S = s;
R = r

in
until
contI

ini t-state (T);
release (T);
T

mDl'1ACRO

R(VAL, sel(S, CONSTRUCT)) do null
(e, 0) *r; --

r1ACRO: f(~ lip-graph for rp.
if ~ , length (proc-id.EVAL_STACK) IIAny evals to finish?
then unless ~(undef, proc-id.FATHER) do IINo,

(if proc-id.LAST - Iiterminate.
--then interrupt (proc-id.FATHER, 4, top-stack)

else interruyt (proc-id.FATHER, 4, undef));
rem-entry (proc ;
terminate)-

else (set-prog-id (proc, top-from(proc-id.EVAL_STACK));
set-control (proc, top-from(proc-id.EVAL_STACK)))

ENDHACRO

MACRO: hpl
~ rem-entry

terminate
ENDHACRO

(proc) ;r-
liP-graph for hp(l).
IIRespond to unmonitor order

201

~1ACRO: ~

§ interrupt (q (2) [1], 5, 0);
advance (q (~)) ;
dump(2).aflag := false; ~
set-status (proc, dump(2)) ~

ENDHACRO - -

Sec 6.7

IIAcknowledge pause request.

IIAnd, pause.

[mCRO: hp3 liP-graph for hp(3).
§ advance (q(2)); IIContinue after cont.

dump(3).aflag := ~;
durnp(3).level := 3;

. set-status (proc, dump (3)) ~
ENDHACRO

r.~CRO: hp4 liP-graph for hp(4); to accept completion
9 unIeSs ~(undef, ~(4) [1]) do Iinotification from sons.

proc-id.VALUE := ~(4) [IT;
advance (q(4));
proc-id.NPATHS := rval (proc-idNPATHS) - 1;
iff ~(O, rval(proc=Id.NPATHS») dollLast son?

(dump(4).aflag :- ~; IIYes, prepare to resume
dump(4).level := 3;
rval (proc-id.VALUE)); IIPlace value on stack.

set-statUs (proc, dump(4)) ~
ENm1ACRO - --

~ffiCRO: ~ liP-graph for hp(S).
§ advance (q(S));

p count := rval(p count) - 1;
iff ~(o, rval(p-count) do
-(gump (Sr:Tevel := 3; -

~(S).aflag := true);
set-status (proc, dwnpT5)f ~

ENDMACRO

202

CHAPTER 7

Controlling Process Capabilities

and

ilandling Error Situations

7.1 Introduction

This chapter corrects the weakness in the model noted in

Section 4.7 concerning controlled interactions. In addition,

it considers the problem of handling error situations in the

model.

Section 4.7 observes that although the model does include

means to control the effects actions of one process can have on

another, the control that can be exerted is very coarse.

Extensions to the model which permit finer control to be

exerted over the external aspects of process behavior are

described in this chapter.

It is useful to distinguish two areas in which control

should be exerted: the use of operators which are "inherently

external"; and, the use of operands which are "potentially

external". Certain of the operations a process can perform

are, by their very nature, "external" in that they always

affect other processes. The class of inherently external

operators includes, for example, the prog-items t-seize,

203 Sec 7.1

interrupt and set-level. There are certain other operations a

process can perform which may, depending upon the values of

their operands, effect other processes. For example, a storage

operator with one memory designator as an operand may affect

other processes while the same operation with another

designator as an operand may not. Such operators are not

inherently external. Rather, their operands determine whether

their effect is external.

As it is described by Chapters 3 and 4, the model includes

no means for. restricting the way a process uses particular

operators and operands. Section 7.2 describes changes to the

model which make it possible to exert control over how a

process uses inherently external operators. Section 7.3

discusses an extension which, in effect, makes it possible to

restrict the use of potentially external operands. Two

examples in Section 7.4 illustrate how, with these extensions

to the model, it is possible to specify finer control over

process behavior.

Chapters 3 and 4 note certain circumstances in which the

actions taken by a process result in error situations. For

example, Section 4.2 notes that an error situation occurs

whenever a process attempts to add an item to a stack or queue

which is already full. Although the possibility of such

situations has been noted, nothing has been said that indicates

how they are handled when they do occur. Section 7.5 proposes

a method for treating error situations.

7.2 Restricted Operators

204 Sec 7.2

As the previous section notes, some of the operators

processes can perform are inherently external. Let E denote

the class of such operators. This section is concerned with

the problem of limiting the capabilities of particular

processes with respect to members of E. For the present the

exact membership of E is unimportant.

The following considerations form the basis for

modifications to the model that enable control to be exerted

over how members of E are used:

1. There are situations in which some processes require

different capabilities than others. For example, in

the situation described in Section 4.7 the supervisory

process P should be less restricted than its slaves.

Therefore, it should be possible to vary, from process

to process, the restrictions placed on use of members

of E. This suggests that the state of each process

define the restrictions placed on use of members of E

by the process.

2. It should be possible to place a "continuum" of

restrictions on the use of an operator. For example,

consider the prog-item set-level. Depending upon the

situation, the restrictions placed on its use could

range from none at all, to use with operands

constrained to be within a certain range (e.g., its

second operand, n, might be restricted to 3<n_lmax>, to

205

total prohibition of its use.

Sec 7.2

3. A question that naturally arises is: Who or what is

interested in controlling the capabilities of a process

P with respect to E? In the context of the model there

is only one answer possible: another process Q.

Suppose Q is interested in restricting pIS use of an

operator ~EE. In such a situation an attempt by P to

perform e is an event of interest (see Section 2.5) to- -
Q. Q can truly exert control if it is able to

intervene whenever P attempts to perform ~ and, if it

chooses, perform e "for" P. This suggests that the. -
interrupt mechanism be used to inform Q of pIS attempts

to perform~. Hore generally, it suggests that, for

this kind of control to be feasible, attempts by

processes to use members of E are events that should be

monitored for automatically.

4. It should be possible for a third process R to control

QI S use of e. In such a case, an attempt by P to

perform e could result in an attempt by Q to perform e

("for" p) which would, in turn, be an event of interest

to R.

5. There are situations in which it is useful for a

process P to be able to control its own use of e.

Suppose, for example, that P is "running" an unreliable

program A, perhaps to debug it. If it had the ability

to control its own use of certain operators, P could

select a set of "critical" operators whose use within

206 Sec 7.2

prog A it wished to monitor. P could then run A with

the assurrance that whenever one of the critical

operators were attempted it could check that it was

"safe" to perform the operator before allowing it to be

performed. In such situations an attempt by P to

perform ~ is an event of interest to P itself.

6. A natural time to restrict the capabilities of a

process is when it is created. Furthermore, it is

natural for the creating process to define the

restrictions. In addition, it should be possible to

modify the restrictions placed on an existing process.

7. It is desirable that, with the exception of the part of

its state that specifies restrictions, a process need

not be aware of restrictions placed on it. With this

property, it is possible to "run" the same program in

"debugging" (highly restricted) and "production"

(relatively unrestricted) environments without

rewriting it.

The specification of restrictions placed on a process'

capabilities with respect to E is organized into a new process

state component called the ~estricted operator list (rlist).

There is a potential entry in the rlist of a process for each

operator eEE. Absence of an entry for ~ in the rlist component

of a process means that use of ~ by the process is

unrestricted. As the model has been described in Chapters 3

and 4, all processes, in effect, have empty rlist components.

207 Sec 7.2

The presence of an entry for ~ means that its use has been

restricted. The restrictions placed on e's use are defined by

the rlist entry for it which contains two pieces of

information: the designator of the process restricting its use

and an integer defining an interrupt level.

The restrictions described by the rlist component are

enforced by a modification to the state transition rule (see

Figures 3.1 and 3.3). The modification is to part 9.1 of

Figure 3.3 which reads

interpret the p-graph node specified by pc

The modification is to be described in two parts. The first

part describes changes which enable one process to control

another's use of particular operators: and, the second part

describes additional changes which enable a process to control

its own use of particular operators.

The flow diagram in Figure 7.1 illustrates the first part

of the modification. Parenthesized numbers (9.1.1 through

9.1.5) appearing in the following discussion refer to parts of

Figure 7.1.

Interpretation of a p-graph node ~ for a process P begins

by checking to see whether ~ is a member of E (9.1.1). If it

is not, ~ is interpreted as before (9.1.2) to complete the

state transition. Otherwise, piS rlist comRonent is searched

for an entry corresponding to ~ (9.1.3). If there is no such

entry, piS use of n is unrestricted and n is interpreted as

208 Sec 7.2

let (Q, j) be
the rlist entry

interpret p-graph
node specified
by EE. (§J)

yes
is there an
entry for ~

on rlist?
@

no

no

let ~ be the p-graph
node specified by EE.

set sflag to Q
Q

add .E..E.£.£ to j th
queue of Q

Q

interpret
n 1------....

o

Figure 7.1

Modification to the state transition rule (see Figures
3.1 and 3.3) to enforce the restrictions described by the
rlist component. This figure does not include the case
Q =~. Figure 7.2 completes the modification by including
that case.

be fore (9.1.2).

209 Sec 7.2

Should an rlist entry for ~ exist, its use by P is

restricted. The entry for~, (Q, j), indicates that process Q

controls piS use of n and that an interrupt event of importance

j is to occur whenever P attempts n. To complete the state

transition, P is seized by Q (9.1.4) and Q receives an

interrupt request of importance j consisting of piS process

designator (9.1.5).

The seizure of p by Q (9.1.4) serves two purposes:

1. it permits Q to change piS state as it performs n "for"

P; and

2. it prevents changes to piS state by processes other

than Q until Q completes n for P.

Q acts toward P in a supervisory capacity with respect to

operator~. To perform ~ for P, Q must, of course, be prepared

to respond to interrupt requests of importance j; that is, QI S

~(j) state component must be set appropriately. Q can tell

which operator P has attempted by examining piS prog and pc.

Note that QI S actions on behalf of P are invisible to P.

Therefore, P need not be aware of the restrictions placed on

its use of n.

It may be the case that there is an entry (R, k) for n on

Q's rlist. In such a case when Q attempts to perform n for P,

it is seized by Rand R receives an interrupt request of

importance k.

210

A natural extension of the discussion above is to

Sec 7.2

interpret the presence of an entry (P, j) for ~ on pIS rlist as

meaning that P is to control its own use of ~ by way of its own

~(j) component. Suppose pIS rlist has such an entry (i.e., in

terms of Figure 7.1 suppose Q = P) and consider what happens

when P attempts n. The modification to the state transition

rule described by Figure 7.1 forces seizure of p (9.1.4) by

itself thereby preventing P from proceeding further (part 1 of

Figure 3.1). This difficulty can be avoided by checking

whether Q is P before setting pIS sflag and, if it is, omitting

the step that sets it. If j is less than the current value of

pIS level component, P is interrupted on its next state

transition causing interpretation of its hp(j) component to be

initiated. However, if j>level, the presence of an interrupt

request in pIS ~(j) component is unnoticed (part 2 of Figure

3.1) and ~(j), which is to perform ~ for P, can not be

initiated. This suggests that the state transition rule allow

the interrupt request to be made only if j<level and take other

appropriate action (to be specified momentarily) if it is not.

Assuming that j is less than level and therefore that ~(j) is

initiated, a problem still remains. The entry for ~ on pIS

rlist, which caused ~(j) to be intitiated, prevents ~(j)

itself from using~. The solution to this problem is to allow

P to perform n when its level is less than or equal to j.

Figure 7.2 completes the modification to the state

transition rule. It includes both the changes included in

211 Sec 7.2

let (Q, j) be
the r1ist entry

interpret p-graph
node specified
by .E..£.

yes
is there an
entry for ~

on r1ist?

no

yes

no

let ~ be the p-grpph
node specified by ~

"0 yes

set

add ~ to j~

queue of Q

interpret
n

.1.

Figure 7.2

Modification to the state transition rule (see Figures
3.1 and 3.3) to enforce the restrictions described by the
r1ist component.

212 Sec 7.2

Figure 7.1 and the changes described above that enable a

process to control its own use of particular operators. The

presence of an entry (Q, j) for operator n on process pIS rlist

is interpreted as follows:

1. if Q ~ P, process Q controls pIS use of~; whenever p

attempts ~' p is seized by Q (9.1.4) and Q receives an

interrupt request in its ~(j) component (9.1.5).

2. if Q = P, P controls its own use of~; whenever it

attempts !!.

a. if the value of its level component is greater than

j, P receives an interrupt request in its ~(j)

component (9.1.5) causing its ~(j) component to be

initiated.

b. if its level component is less than or equal to j,

it performs ~ with no interruption (9.1.2).

Figures 3.1, 3.3 and 7.2 together define the model state

transition rule. They are reproduced together as Appendix 2.

The ability of a process P to control its own use of an

operator n by placing an entry (P, j) for n on its rlist

represents a generalization of the notion of master and slave

mode frequently found in computer systems. P operates in

"master mode" with respect to n when the value of its level

component is j or less in the sense that there are no

restrictions on its use of n. When its level component is

greater than j, it operates in "slave mode" with respect to n

and attempts by it to use n are "trapped" by a "master mode

213 Sec 7.2

procedure", its hp(j) component, which performs n for it.

In addition to the state transition rule modification,

some further changes to the model are required to gracefully

accommodate the rlist mechanism.

Process creation, as described previously, is modified

slightly to accommodate specification of an rlist component.

The new-proc operation is changed to take the rlist intended

for the new process as an operand. The value of

new-proc (r)

is the designator of a newly created process whose rlist is r

and whose other state components are as described previously in

Section 4.6.

It is important that new-proc be a member of E. If it is

not, a process could side step restrictions placed on it by

using new-proc to create a new unrestricted process to perform

its activities.

Because t-seize and release have external effects both

should be included in E. However, as defined in Section 3.6,

they are incompatible with the restriction mechanism. The

source of the incompatibility is that a process can seize and

release other processes only for itself. Thus, although,

process pIS rlist has entry (Q, j) for t-seize, Q is unable to

perform t-seize for P. The solution to this difficulty is

simple: t-seize and release are replaced by t-seize-for and

release-for. The effect of

214

t-seize-for (pI, p2)

is identical to that of

Sec 7.2

t-seize (p2)

with two exceptions. The first is that if the seizure attempt

succeeds the sflag of p2 is set to pl. The second exception

has to do with when the sflag of p2 is set (see Section 3.6).

If t-seize-for set the sflag immediately, step 9.1.4 of the

transition rule could (if p2 is in the midst of attempting a

restricted operation) reset the sflag after t-seize-for had set

it. To avoid such situations the t-seize-for operation

coordinates with p2 such that it does not set p2's sflag or

"return" true until after p2 completes its current state

transition. Of course, if that state transition should set

p2's sflag t-seize-for returns false. To seize p2 for itself a

process performs

t-sei ze-for (proc" p2)

The operator release-for works in an analogous manner.

As with the other process state components, processes can

directly manipulate rlists. However, effective functioning of

the restriction mechanism requires a process be denied

arbitrary "write" access to both its own rlist and those of

other processes.

It is now necessary to examine in detail the nature of the

rlist. rElIe rlist component is the designator for a struct

IIlhose selectors are "names" of members of E (i.e., identifiers

corresponding to the prog-items of E) and whose components are

215

designators for rows of the form

Sec 7.2

Thus, for example,

process integer
designator

net,"'-proc ([set-level :[proc, 4],
set-hp:[P,4~
interrupt:[Q,6]])

where P and Q are process designators, creates a orocess with

restricted capabilities. Its use of set-level is controlled by

the creating process, its use of set-hp by P, and its use of

interrupt by Q.

The prog-items add-rlist and rem-rlist, both members of E,

strengthen and relax, respectively, the restrictions placed on

a process. ~fuen

add-rlist (pI, op, p2, n)

is interpreted, the entry [p2, n] is added to pI's rlist as the

entry for Ope As a result process p2 is given control of

process pI's use of Ope The effect of

rem-rlist (pI, op)

is to alloH pI unrestricted use of op by removing the entry for

op from its rlist. For example, the sequence

rem-rlist (pI, quote(new-proc));

add-rlist (pI, quote (new-proc) , p2, n)

causes the entry for new-proc on pI's rlist to be changed to

[p2, nne As is the case with the other state component setting

operations, for a process to use add-rlist or rem-rlist, pI

216 Sec 7.2

must either be its own process designator or the designator of

a process it currently has seized. A processs can access the

value of its own rlist using the prog-item rlist and the values

of other processes' rlist components using rlist-of.

As remarked earlier, the exact membership of E is

irrelevant to the mechanism for limiting the capabilities of

processes with respect to its members. However, it is clear

from the discussion above that, for the mechanism to be

effective, E should include

new-proc, rem-rlist, add~ist

For the purposes of this dissertation E is assumed to include,

in addition,

terminate, interrupt, set-level

set-level-inactive, set-status,

restore-dump, set-hp, set-q,

interrupt, t-seize-for, release-for

I feel that use of the state component setting operations not

included on the above list can be adequately controlled by the

mechanism introduced in the following section.

A different and perhaps more extravagant approach to E's

membership would be to allow E to vary from process to process,

using the rlist state component to define it. A particular

operator would be in E for a particular process if it had an

entry in the rlist for that process. If this approach were

used, part 9.1.1 of Figure 7.2 could be eliminated.

7.3 Restricted Values

217 Sec 7.3

In addition to being able to control the use of inherently

external operators, the ability to control the use of

potentially external operands is important. For the model the

potentially external operands are memory designators (I-values,

stack designators, queue designators) and process designators.

External effects may result from their use as operands.

Section 4.7 observes that whenever the use of such a designator

has external effects, the process using it must either have

"received ll it from or II g iven ll it to another process. Strictly

speaking, it is access to the memory elements and processes

denoted by such designators which is to be controlled.

The model as it has been described, includes no mechanism

to control access to memory elements or processes. This

section introduces the notions of restricted type and

restricted value and uses them as the basis for a mechanism

able to restrict access to memory elements and processes.

Recall that the universe of discourse Jl is partitioned

into classes of values called types (Section 4.3). It is

possible to associate with each type T of A a set of operations

0T whose operands must be members of T. For example, consider

the type I-value. Operands for the prog-items rval and t-set

must be I-values, as must the first operand of the prog-item

store. Therefore, the set associated with type I-value is

0l_.,.'e = {rval, t-set, store:l}

218 Sec 7.3

where the notation ":1" is used to indicate the relevant

operand of store.

To introduce the notion of restricted values, it is useful

to think of type T as being defined by the set 0T. A subset of

the operation set 0T can then be thought of as defining a class

of values which constitute a "sub-type" of T. The class of

values TR defined by the proper subset 0T
R

of OJ is called a

restricted sub-type of T. '1'he members of T~ are restricted

values (of type T) in the sense that some but not all

operations that can be performed with members of T as operands

can be performed with members of TR as operands. That is, for

v€:Tl\ and £,OT' v can be an operand of £ only if £EOTR • The

subset 0c. = 0,. defines a sub-type Te which is T itself. Te. is

referred to as the complete sub-type (of T) and members of Tc

are called complete values o By convention p complete values of

type T and restricted values of type T are collectively

referred to as values of type T.

As an example, reconsider the type I-value. The set

o I-va hole ' speci fied above, defines complete I-values, and its

subsets

and

01-vah.LeRl. = {store:l, t-setl

define two restricted sub-types, l-valueR1 and l-valueR~. An

I-value of restricted sub-type l-valueRf can not be used to

"write" the r-value of the cell it denotes. Similarly, one of

219 Sec 7.3

sub-type I-valueRZ can not be used to "read" the r-value of the

cell it denotes. The same cell can be denoted by a complete

I-value and by restricted I-values of both sub-types. Each of

the I-values defines different access to the cell.

As the universe of discourse has been described, all

values are complete. By enlargingJL to include restricted

memory and process designators, it is possible to control

access to memory elements and processes. For example, the use

of a particular cell by a particular process could be

controlled by "giving" that process a restricted, rather than

the complete, I-value for that cell. Control of this sort

depends upon ty,O properties of the model:

1. there is no means for a process to arbitrarily generate

complete values from restricted ones; and

2. operands are checked for type before operations are

performed.

The remainder of this section details the restricted

sub-types added to.!t and describes operators which generate

restricted values from complete values.

Six restricted sub-types are introduced for memory

designators, two each for I-values, queue designators and stack

designators. They are:

1. read-only I-values defined by the set

{rval 1
2. write-only I-values defined by the set

{t-set, store: I}

220

3. read-only stack designators defined by the set

{ index, length l
4. write-only stack designators defined by the set

f E£E" push: 1 }

5. read-only queue designators defined by the set

{index, length I
6. write-only queue designators defined by the set

f enqueue: 1, advance 1

Sec 7.3

Three restricted sub-types are introduced for process

designators. They are:

1. read-only process designators, to be used only to

"read" values of the state components for processes

they designate, defined by the set

{t-seize-for:2, release-for:2,

prog-of~ pc-of~ ••• }

2. write-only process designators, to be used only to set

the state components for processes they designate,

defined by the set

ft-seize-for:2, release-for:2,

set-prog:l, set-pc:l, ••• ,

add-rlist:l, rem-rlist:l ~

3. interrupt-only process designators, to be used only to

interrupt the processes they designate, defined by

{ interrupt: 1 J
The seizure operators appear in the sets defining read-only and

write-only process designators because a process must first

221 Sec 7.3

seize another before it can "read" or "write" the other's state

components.

Clearly, additional sub-types, such as read-interrupt

process designators, could be introduced. However, the intent

at present is not to discuss which sub-types are most useful,

but rather to illustrate how the notion of restricted sub-type

can be incorporated into the model. Consequently, no further

sub-types are defined.

7.4 Examples

7.4.1 Inherited Restrictions

This example illustrates how a process P can insure that

its descendents create only processes which are restricted at

222 Sec 7.4.1

least as much as they themselves are. Stated differently,

whenever D, a descendent of P, creates a new process E, E can

have no more capabilities than D itself has; E "inherits" D's

restrictions. D may create processes more restricted than

itself. For this example the phrase

E is more restricted than D

is taken to mean

For each operator £ having an entry (Q, j) on D's

r1ist, E's r1ist has a corresponding entry which must

be either (Q, j) or (D, k); furthermore, E's r1ist

may contain entries for operations not found on D's

r1ist.

There are a number of strategies P might employ. The

following one is relatively straightforward and has the

advantage that P itself need not perform new-proc for its

descendents.

For each "ordinary" process it creates P makes sure that

the r1ist component contains the entry (S, 2) for new-proc,

where S designates a "special" unrestricted process created by

P for the sale purpose of performing new-proc for piS

descendents. Because P creates S, it can insure that S does

nothing but respond to requests to perform new-proc. ~ihen S

creates a new process for D (a descendent of P) it uses both

the rlist specified by D (the top item of D's stack) and D's

r1ist to build an rlist for the new process which is at least

as restrictive as D's. Should the rlist D specifies be less

223 Sec 7.4.1

in
for i =
---r if

restrictive than that of D itself, S, nonetheless, creates a

process at least as restricted as D. After the new process is

created, S sets D's stack, "advances" its pc and releases it.

The macros diff and is-selector appear in the definition

of the hp(2) component for S. The value of

di f f (Rl , R2)

where Rl and R2 designate rows, is the designator for a row

whose components are the components of Rl which are not

components of R2. The value of predicate

is-selector (x, y)

where x is an identifier and y designates a struct, is true

only if x is a selector for the struct designated by y.

The ~(2) component for Sis:

let D = q (2) [1]; IIProc attempting new-proc.
DRLIST = rlist-of (D); 11••• its rlist.
DSTACK = stack-of (D); 11••• its stack.
R = DSTACK [1]; liThe proposed rlist.
OPS R = selectors (R); 11••• operators on it.
DIFF = diff (selectors (DRLIST, ops R);
RLIST =-new-cell (nil); IIRlist to be built
T = new-cell (underrT
i = new-cell (0)

1 to length(OPS R) do IIAdd ops on R to RLIST.
is-selector (OPS RTi], DRLIST) A
ne (D, select(R,-OPS R[i]) [1])

then T := select (DRLIST, OPS R[i])
else T:= select (R, ops R[i]r;

RLIST := aug-struct (rval(RLIST), ops R[i],
rval (T))) ; -

for i = 1 to length(DIFF) do IIAdd ops not on R but
-rrLIST := aug-row (rval(RLIST), lion DRLIST to RLIST.

DIFF[i], select (DRLIST, DIFF[i])

224

T := new-proc (rval(RLIST» ~

pop (DSTACK)~ ----
oush (DSTACK, rval(T»~

~pc (D, pc-01TD).next)~
release (D)~
advance (s. (2)) ~
set-status (proc, dump(2»

IIPerform new-proc
IIArrange D's •••
11••• stack
11 ••• and pc.

Sec 7.4.1

vfuen S is created, P initializes its status and environment

components to

prog = undef

pc = 1

aflag = false

level = 3

and then releases it.

stack = new-stack

prog-id = nil

proc-id = nil

rp = undef

7.4.2 Describing A Supervisory Process

This example illustrates how the situation described in

·Section 4.7 can be achieved. To review, the situation is:

Process P creates processes upon request from initial

state specifications and subsequently acts in a

supervisory manner toward those processes (slaves).

Specifications for the processes it creates originate

externally to P.

The statement

P acts in a supervisory manner toward S

is taken to mean

P is able to exert some degree of control over the

actions of S. For example, P can cause S to terminate.

225 Sec 7.4.2

The strategy to be used by P to control its slaves is to

reserve interrupt level 1 for interactions with them. And,

when it creates a slave, to set the slave's hp(l) component

such that the slave responds to its interrupts as P wishes.

For this to be a workable strategy P must insure

1. no slave can set its or any other slave's level

component to 1;

2. no slave can tamper with its or any other slave's hp(l)_._-

component;

3. no slave can remove any of the restrictions placed on

it or any other slave by P;

4. no slave can create a process less restricted than

itself;

5. whenever a slave creates another process, P is informed

(this permits P to act as a supervisor to descendents

of slaves); and

6. no slave can seize P.

In addition, although unnecessary, P insures

1~ no slave can interrupt another process on level 1;

2. whenever a slave terminates, P is informed.

To implement this strategy P makes an r1ist component for

each slave it creates which includes the entry

[int-p-des (P), 2]

for each of the prog-items

new-proc, terminate, rem-r1ist, set-level,

set-hp, set-hp-inactive, set-status, restore-dump

226 Sec 7.4.2

This insures that

1. it controls how slaves use these prog-items: and

2. slaves can neither read nor write its state.

pIS ~(2) component must, of course, be prepared to perform the

above operators for the slaves.

Definitions for fragments of pIS hp(2) component

corresponding to each of the prog-items follow. The

definitions make use of the macros:

1. remove(Q), which removes the process designator Q from

the "process table" P maintains. (The "process table"

is a record of all slaves and descendents.)

2. ~ (S, i), which pops i items from the stack

designated by S.

3. seize-from (pI, p2), which seizes process p2, currently

seized by pIo

4. reseize-for (pI, p2), which releases process p2 and

seizes it for pl.

5. is-on (r, c), whose value is true if c is a component

of row Land false otherwise.

and the identifiers:

1. S, the designator of the slave process attempting to

perform a restricted prog-item.

2. SSTACK, the stack component of S.

3. OP_LIST, a row whose components are the seven

prog_items restricted by P (see above).

4. T, a cell used for temporary storage.

227 8ec 7.4.2

new-proc fragment:

terminate fragment:

same as hp(2) for "special" process 8
from the1previous section with the
exception that an entry is made for
the new process in the "process table"
P maintains.

remove (8);

rem-rlist (S, quote(terminate));
release-for (proc, S)

rem-rlist fragment:

IIRemove 8 from
II"process table".
IIAllow 8 to do terminate.
IIRelease S so that it
Ilcan perform terminate.

unless is-on(OP LIST, SStack[2]) do
T :- ~ (SSTACK[l] ,S) -
unless rval(T) do

seize=1irn (S-,-SSTACK[l]);
rem-rlist (SSTACK[l], SSTACK[2]);
unless rval(T) do

reseI"Ze'=for TS', SSTACK[l]));
~ (SSTACK, 2);
set-pc (S, pc-of(S).next);
release-for (proc, S)

set-hp fragment:

IIUnless prog-item
Ilin question is one
Ilrestricted by P,

lido the rem-rlist.

IISet S's stack
IIand pc.

IIUnless attempt is to
Iiset hp(l), do it.

unless ~(l, SSTACK[2]) do
T := ~ (SSTACK[l] , S);
unless rval(T) do

seize=1rom (5; SSTACK[l]);
set-hr (SSTACK[l] , SSTACK[2], SSTACK[3]);
unless rval(T) do

rese1Ze-for-rs, SSTACK[l]));
npop (SSTACK, 3); IISet S's stack
set-pc (S, P(-Of(S).next) IIand pc.
release-for proc, S)

set-level fragment:

228 Sec 7.4.2

IIUnless attempt is to
Iiset level to 1, do it.

unless eq(l, SSTACK(2)) do
(T-:= ~ (SSTACK[l)--,S)

unless rval(T) do
seize=rr0m (S;-SSTACK[l))i

set-level (SSTACK[l), SSTACK[2]) i
unless rval(T) do

reseize=for (S, SSTACK[l]))i
npop (SSTACK, 2);
set=pc (S, pc-of(S).next)i
release-for (proc, S)

set-level-inactive, set-status and restore-dump fragments
are analogous to the set-level fragment.

interrupt fragment:

unless ~ (1, SSTACK[l]) do IIUnless interrupt is
interrupt (SSTACK[l];- Ilfor levell, do it.

SSTACK[2], SSTACK[3]) i
npop (SSTACK, 3);
set=pc (S, pc-of(S).next)i
release-for (proc, S)

Note that whenever a slave S tries to use a restricted

prog-item in a way not permitted to it, P merely sets SIS state

as if it had performed the operation without actually

performing it. In a "real" application P would probably inform

S that its attempt to do something forbidden to it failed.

7.5 Handling Errors

This section proposes an error handling facility for the

model.

Although the number of potential error situations is

enormous, all share the property that they occur when a process

229 Sec 7.5

attempts something not permitted. In that sense, an error

situation is similar to the situation resulting when a process

attempts to perform a restricted operation. Both occur when a

process attempts something it is unable to do. This suggests

that error situations be treated analogously to attempts to

perform restricted operators.

A method for handling error situations is to introduce the

"fictitious", inherently external operator error. An entry for

error in the rlist component of a process defines a process

assigned to handle error situations for the process. The

occurrence of an error situation is to be regarded as an

attempt by the process to perform error. Each possible error

situation has a code assigned it.

An error situation occurring in a process P is handled as

follows. If piS rlist does not include an entry for error, P

is terminated. If there is an entry (Q, j) for error

1. P is seized by Qi and

2. Q receives an interrupt request of importance j

consisting of

[proc:p, code:n]

where n is the code assigned for the particular

error.

Q, if it is able to correct the error situation, can set piS

state accordingly and release it. If it can not, it can either

request assistance from another process or deem the situation

hopeless and force P to terminate.

230

CHAPTER 8

Concluding Remarks

8.1 Summary

This dissertation has investigated the problem of

representing groups of loosely connected processes. The goal

of the investigation was the development of a method for

process representation useful for synthesizing process behavior

patterns. The method developed allows specification of both

the internal structure of individual processes and the

"interface" structure between processes which interact.

Presentation of the investigation can be divided conceptually,

if not chronologicallyu into three phases o

The first phase (Chapter 2, Section 4.7, parts of Chapter

7) isolated the concepts \vhich \-'Jere to form the basis for the

process representation technique. In it questions such as

What is a process?

What is an event?

~ihat must processes do to interact?

Should all processes be equally capable?

were considered. httempting to answer fundamental questions

such as these focused attention on aspects intrinsic to

processes and interactions among them.

231 Sec 8.1

The second phase (Chapters 3, 4, 7) exhibited a specific

realization of the concepts developed in the first phase. A

model was developed that captures the essential aspects of the

process notion. The model is a synthetic one in the sense that

it is designed to host descriptions of patterns of process

behavior. In the course of defining the model certain

decisions concerning the detailed composition of its universe

of discourse and the detailed properties of its virtual memory

were ~ade. To a large extent the features of the model that

result from those decisions are orthogonal to the ones enabling

it to synthesize groups of interacting processes. For example,

the model's ability to support descriptions involving

interactions by way of interrupt events is independent both of

the fact that its virtual memory includes cells and of the fact

that its universe of discourse has dynamic types. Had such

decisions been made differently, the result would have been a

different, but possibly equally useful, realization of the

concepts developed in the first phase.

The third phase (Section 5.3, Chapter 6, Section 7.4)

demonstrated by example that the model for process synthesis is

indeed a useful one for synthesizing process behavior patterns.

In it the model was used to define a variety of interesting

process behavior patterns, including some that have achieved

prominence in the literature.

232

8.2 Areas for Extending the Research

8.2.1 Extensions and Changes to the Model

Sec 8.2.1

Many areas touched upon in this dissertation suggest

questions which remain unanswered. Perhaps the most

significant contribution of the dissertation is the conceptual

framework it provides for discussing such questions. Among the

more interesting questions which merit further investigation

are the following:

1. State structure:

Should all processes have the same state structure? If

not, how can the model he modified to cope with processes

having variable state structure? Clearly, as the model has

been defined the state structure for all processes is the same.

The proc-id component, in a sense, represents a small step

toward processes with variable state struct~re. Consider, for

example, the proc-id component for processes that use the eval

macro (see Section 5.3.3). It is meaningful to think of the

identifier EVAL STACK as a separate state component: its

function is to keep track of unfinished eval's.

2. Process seizure:

The notion of process seizure (see Section 3.6) is

somewhat heavy handed. ~vould some sort of "automatic" seizure

and release which occurs as part of a set- --- operation be

better? Or, perhaps better yet, would a notion of "partial"

233 Sec 8.2.1

seizure, which effects only specified parts of a process state,

be useful? What other changes to the model, if any, would a

different treatment of seizure require?

3. Retained objects:

Dennis and Van Horn [Dns66] use the term "retained object"

to refer to an item such as a file which normally exists longer

than the process which creates it. Operating systems provide

various mechanisms for dealing with retained objects. Can the

nodel, as it is, gracefully handle the notion of retained

object? If so, how? If not, how should it be extended to do

so? The ability to discuss retained objects would enable it to

describe groups of processes operating in the environment of a

file system. What would be appropriate rules for processes to

follow in manipulating retained objects?

4. OWnership:

As the model has been described, the notion of ownership

is present in a weak sense. For example, a process which

allocates a stack (using new-stack) can be thought of as

"mming" it. By passing to some processes the designator for

the stack and, to others, restricted designators for it, it can

control which processes access the stack and to a certain

extent how they access it. However, once another process has a
,

designator for the stack the first process can no longer

control hm'l the other process uses it. \vould it be meaningful

to strengthen the notion of ownership in the model? If so, in

what way? In the context of retained objects ownership appears

234 Sec 8.2.1

to be a more meaningful notion. \-Jho or what should II own II

retained objects? Ownership should probably not reside in

processes since, in general, retained objects outlast the

processes which create them. What does ownership of an item

mean? What special privileges does the owner have? Can an

item have more than a single owner?

5. Protection and security:

The model includes features which make it possible to

limit the capabilities of processes with respect to certain

operators and certain kinds of operands. Consider the

following situation (described by Lampson [Lam69]):

A and B are competitors. A has a program P which it is

willing to let B use for a fee. B has some data D

which it would like to use with P. B is willing to pay

A for use of P but since A is a competitor p it would

like to be sure that A can not use P to " read" either D

or the results produced when P runs with D. A is

willing to let B use P but would like to be sure that B

can not " s teal" P and that it can charge B for each use

of P.

Provide an environment which satisfies these

requirements.

Can the model, as it is, synthesize such an environment? Can

such an environment be proven to satisfy the requirements? If

such an environment can not be synthesized, what extensions to

the model would enable it to be? Vanderbilt [Van69] has

235

investigated problems of this sort: can the model be

gracefully extended to include his results?

Sec 8.2.1

6. Storage reclamation:

The model provides for explicit allocation of memory

objects from a "storage pool" but includes no means to

explicitly return cells, stacks or queues to the pool when they

are no longer needed. hs the model has been defined, the

automatic reclamation of memory objects would probably require

a marking garbage collector [Knu68]. All process would

probably be forced to "pause" for at least part of the duration

of the garbage collection. Is it possible to tell without

marking and without forcing processes to pause which memory

objects can be reclaimed? How could the model be modified to

permit explicit "release" of memory objects? What should

happen in the event one process "releases" a memory object also

accessible to others? How "vould an explicit storage

reclamation mechanism interact with the notion of ownership?

8.2.2 Relating the Model to Analytic Models

The model has been developed to serve as a synthetic tool.

Given a description in terms of the model of a particular

pattern of process behavior, it would be useful to be able to

analyze the behavior for properties such as determinacy,

deadlock freeness and output functionality. The specific

properties of interest would probably depend upon the

particular behavior pattern under consideration. What would be

236 Sec 8.2.2

required to perform such an analysis? Certainly a description

in terms of the model itself would be too complex to lend

itself to direct analysis. Could it be "compiled" into a

simpler form more tractable for analysis? What would be an

appropriate form? Could existing theoretical results be used?

Probably not without considerable modification since most such

results are obtained assuming an uninterpreted model (see

Section 1.2.3). IJhat vlOuld be an appropriate model? What are

the relevant theorems and decision procedures? The work

reported by Van Horn [VH66], in which he partially specifies

how a "realistic" computing facility can be related to a simple

analytic model that he has developed and studied, exemplifies

the sort of work being suggested here.

8.2.3 The Hodel as the Basis for a Language Extension Facility

The possibility of a language extension facility that uses

the model as a semantic base merits investigation. The kind of

facility I have in mind would treat the semantics for the base

language and extensions to it uniformly. Semantics for a

language feature, whether it represents an extension or is part

of the base, would be defined in terms of transformations it

produces upon a process state or states. The base language

would be a collection of pre-defined features. Extensions to

the base would be collections of user-defined features, defined

using the same formalism used to define the base.

237 Sec 8.2.3

This approach to language extension is to be contrasted

with the one usually proposed in the literature which is to

specify new constructs in terms of ones existing in the base

language. The notion of the state of an evaluating mechanism

for the language, if present at all, is only weakly so. The

extender can "get his hands on" the evaluating mechanism only

indirectly through existing base language features and as a

result the extensions he can make are limited to "syntactic

sugaring" of existing constructs: hence the term "syntactic

extension" •

On the other hand, if the extender can make direct

reference to the evaluating mechanism and its state in making

extensions, the language features he can define are not so

severely limited. Chapters 5, 6 and 7 have demonstrated how a

variety of linguistic constructs and control patterns, which

are not (to the best of my knowledge) expressible in

contemporary extensible languages, can be defined in terms of

the model.

The following is a sketch of the form such an extensible

language facility might take.

syntactic specification for a language feature would be

made using a variant of BNF to describe both concrete (string)

and abstract (tree) representations (see Section 1.2.1) for the

feature. For example, the "production"

S ::= begin [DSEQ:dseq]

238

[SSEQ:sseq] end

Sec 8.2.3

node type block

where S (statement), DSEQ (declaration sequence) and SSEQ

(statement sequence) are previously defined non-terminal

symbols, describes both the concrete and abstract

representations for "block" statements. The concrete

representation of a block statement is a string starting with

begin, followed by a sequence of declarations (DSEQ), followed

by a semicolon (i), followed by a sequence of statements (SSEQ)

and terminating with end. The abstract representation is a

tree whose root is a node of type block (nodetype block) from

which two branches depart. One branch, selected by dseq, leads

to the abstract representation for the declaration sequence

(DSEQ) and the other, selected by sseq, to the abstract

representation for the statement sequence (SSEQ). The tree for

a block statement can be graphically displayed:

tree
DSEQ

tree for
~

SSEQ

The method for semantic specification is based on the view

that the realization of the computation described by a program

is accomplished by translation followed by interpretation.

Translation is the creation of an initial process state

"corresponding" to the program and interpretation, the repeated

transition from state to successor state starting from that

239 Sec 8.2.3

initial state.

The semantic specification of an extension would consist

of two parts. One part would describe the contribution an

instance of the extension in a program is to make to the prog

component of the initial process state. It would be specified

by eXhibiting a fragment of p-graph corresponding to the

extension. The p-graph fragment would be described in terms of

the abstract representation for the extension using a PGL-like

language (see Chapter 5). The other part would describe the

contribution, if any, the extension is to make to other

components of the initial state.

As an example, reconsider the "block" statement described

above and assume that the extended language is to include both

ordinary and Secret variables (see Section 6.2). Part of the

semantic specification for the "block" statement would be the

p-graph fragment:

SEMANTICS (block.sseq);
set-prog-id (proc, top-from(proc-id.P_ID))

SEMANTICS (block) =
push (proc-id.P_ID, prog-id);
set-prog-id (proc, [top:[HLAYER:new-cell(nil),

SLAYER:new-cell(nil)],
rest:prog-id.rest]); ---

SE~ffiNTICS (block.dseq);
set-prog-id (proc, [toP:~(SLAYER),

rest: [top: rval (NLAYER) ,
rest:prog-id.rest])) ;

where SE:ffiNTICS (block.dseq) and SE~mNTICS (block.sseq) are the

p-graph fragments contributed to the initial state by the

declaration and statement sequences, respectively. (This

240 Sec 8.2.3

specification is essentially that given in Section 6.2 for the

macro block; note that an "enddec" statement is unnecessary.)

To complete the semantic specification for this extension it

would be necessary to indicate that the proc-id component of

the initial state bind the identifier P ID to a stack

designator.

The above discussion has suggested in a very rough way how

the model might serve as a semantic base for an extensible

language. Many details have been omitted. Aside from the

missing details, a number of interesting questions arise. How

would the schemes for data type extension found in languages

such as BASEL (Che68] fit in with such an approach? It is

quite likely that the universe of discourse and the virtual

memory for the model described in this disseration would not be

entirely satisfactory for the language extension application.

What would an appropriate universe of discourse be? What

properties would an appropriate virtual memory have? Should

other changes to the model be made to make it more suitable for

the language extension application? Standish (Sta69] has noted

an interesting question in connection with language extension

concerning the compatibility of extension packages. Suppose

that a facility of the type described above is realized and

falls into widespread use. It is likely that a mode of usage

will evolve in which users make extensions to their own already

extended version of the base language by using extension

packages from a library of extensions. What can be done to

241 Sec 8.2.3

ease the problem of incompatibility between different extension

packages? As a simple example of the kind of incompatibility

that can arise, suppose that a particular programming

application requires both the non-deterministic programming

extension package (similar to that described in macro form in

Section 6.6) and the parbegin-semaphore extension package

(similar to that described in Section 6.6). Both packages use

level 3 but for different purposes. Is it necessary to start

from scratch to define a composite package which resolves this

incompatibility? Or, is it possible by some means to

automatically or semi-automatically resolve it without

completely redefining one or both of the packages?

These questions and others like them deserve careful

investigation for the answers to them should lead to languages

which are truly extensible.

242

APPENDIX 1

Summary of Prog-Items

This appendix is an alphabetical list of the prog-items

discussed in the dissertation. The entry for each prog-item

consists of

1. a description of the operands (if any) taken by the

prog-item:

2. a brief description of the effect of the prog-item:

3. .:eference to sections of the dissertation where a more

complete discussion of the prog-item is to be found.

The following conventions are used for specifying operands

of prog-items~

1. n, nl, n2 indicate integers:-

2. tv, tvl, tv2 indicate truthvalues:

3. id, idl, ••• , idn indicate identifiers:

4. pi indicates a prog-item:

5. qd indicates a queue designator:

6. pd, pdl, pd2 indicate process designators:

7. rd indicates a row designator:

8. sd, depending upon the context, indicates either a

struct designator or a stack designator:

9. cd indicates a cell designator (I-value):

10. md indicates a memory designator: and

243

11. v, vI, ••• , vn indicate arbitrary values.

Appendix 1

add-rlist (pdl, pi, pd2, n):

adds the entry [pd2, n] for prog-item pi to the rlist of the

process designated by pdl. (7.2)

advance (qd):

removes the item at the front of the queue designated by qd.

(4.2)

aflag-of (pd):

the value of the aflag component of the process designated by

pd. (4.6)

and (tvl, tv2):

produces the boolean "and" of tvl and tv2. (4.3)

aug-row (rd, v):

a constructor for rows; produces the designator for a row

identical in all respects to the row designated by rd with the

single exception that it has one more component which is v.

(4.4)

aug-struct (sd, id, v):

a constructor for structs; produces the designator for a

struct identical in all respects to the struct designated by sd

with the single exception that it has one more component which

is v and is selected by ide (4.4)

244 Appendix 1

bind (id, v):

binds id to v in the top id-layer of the process prog-id.

(4.5)

binding (id, sd):

the value to which id is bound in prog-id struct designated by

sd. (3.5, 4.5)

control:

produces the designator for a struct whose components are the

current values of the process prog and pc components. (4.6)

control-of (pd):

produces the designator for a struct whose components are the

values of the prog and pc components of the process designated

by pd. (4.6)

divide (nl, n2):

produces the quotient nl/n2. (4.3)

do (pi):

causes the prog-item pi to be interpreted. (4.3)

dump (n):

the value of the nth component of the process dump component.

(4.5, 4.6)

dump-of (pd, n):

the value of the nth component of the dump component of the

process designated by pd. (4.5, 4.6)

245 Appendix I

enqueue (qd, v):

adds v to the back of the queue designated by qd. (4.2)

env:

produces the designator for a struct whose components are the

current values of the process stack, prog-id, proc-id and rp

components. (4.6)

env-of (pd):

produces the designator for a struct whose components are the

values of the stack, prog-id, proc-id and rp components of the

process designated by pd. (4.6)

~ (vI, v2):

a predicate: true if V1=VZ, false otherwise. (4.3, 4.4)

2:.. (nl, n2):

a predicate: true if nl > n2, false otherwise. (4.3)

gr (nl, n2):

a predicate: true if n1 >n20, false otherwise. (4.3)

!:.I? (n):

the nth component of the process handler programs (hp)

component. (4.5, 4.6)

hp-~f (pd, n):

the n~ component of the handler programs (hp) component of the

process designated by pd. (4.5, 4.6)

246 Appendix 1

index (d, n):

for O(n(length(d) produces the nth component or item of the

row, stack or queue designated by d; otherwise produces undef.

(4.2, 4.4)

interrupt (pd, n, v):

causes an interrupt event to occur by placing v in the q(n)

component of the process designated by pd. (3.4)

int-p-des (pd):

produces an interrupt-only process designator from the complete

process designator pd. (7.3)

is-ident (v):

a predicate: true if v is an identifier, false otherwise.

(4.3)

is-int (v):

a predicate: true if v is an integer, false otherwise. (4.3)

is-lval (v):

a predicate; true if v is an l-valu~ (cell designator), false

otherwise. (4.3)

is-nil (v):

a predicate: true if v is ~' false otherwise. (4.4)

is-proc (v):

a predicate: true if v is a process designator: false

otherwise. (4.3)

247 Appendix I

is-prog-item (v):

a predicate; true if v is a prog-item, false otherwise. (4.3)

is-queue (v):

a predicate; true if v is a queue designator, false otherwise.

(4.3)

is-row (v):

a predicate; true if v is a row designator, false otherwise.

(4.3)

is-stack (v):

a predicate; true if v is a stack designator, false otherwise.

(4.3)

is-struct (v):

a predicate; true if v is a struct designator, false

otherwise. (4.3)

is-truthval (v):

a predicate; true if v is a truthvalue, false otherwise.

(4.3)

is-undef (v):

a predicate; true if v is undef, false otherwise. (4.3)

Ie (nl, n2):

a predicate; true if 1/1 <na, false otherwise. (4.3)

length (d):

for d a row designator, the number of components of the

248 Appendix I

designated row~ for d a stack or queue designator, the number

of items in the designated stack or queue. (4.2, 4.4)

level:

the value of the process level component. (4.5, 4.6).

level-of (pd):

the value of the level component of the process designated by

pd. (4 • 5, 4. 6)

minus (nl, n2):

produces the difference nl-n2. (4.3)

~ (vI, v2):

a predicate~ true if vI ~ v2, false otherwise. (4.3)

new-cell (v):

produces the cell designator (I-value) of a newly allocated

cell which has been initialized to v. (4.2)

new-proc (sd):

produces the process designator for a newly created process

whose rlist component is sd. (4.6, 7.2)

new-queue:

produces the queue designator of a newly allocated queue which

is empty. (4.2)

new-stack: produces the stack designator of a newly allocated

stack which is empty. (4.2)

249

not (tv):

produces the boolean compliment of tv. (4.3)

Appendix 1

~ (tvl, tv2):

produces the boolean "or" of tvl and tv2. (4.3)

E.£:

the value of the process pc component. (4.5, 4.6)

pc-of (pd):

the value of the pc component of the process designated by pd.

(4.5, 4.6)

plus (nl, n 2) :

produces the sum nl+n2. (4.3)

~ (sd):

removes the top item from the stack designated by sd. (4.2)

proc:

the process designator of the requesting process. (4.6)

proc-id:

the value of the process proc-id component. (4.5, 4.6)

proc-id-of (pd): the value of the proc-id component of the

process designated by pd. (4.5, 4.6)

~:

the value of the process prog component. (4.5, 4.6)

250 Appendix 1

prog-of (pd):

the value of the prog component of the process designated by

pd.· (4 • 5, 4 • 6)

prog-id:

the value of the process prog-id component. (4.5, 4.6)

prog-id-of (pd):

the value of the prog-id component of the process designated by

pd. (4 • 5, 4. 6)

push (sd, v):

causes v to be inserted at the top of the stack designated by

sd. (4.2)

So (n):

the value of the nth component of the process queues (q)

component • (4 • 5, 4. 6)

q-of (pd, n):

the value of the nth component of the queues (q) component of

the process designated by pd. (4.5, 4.6)

quote (v):

when the prog-item quote is interpreted, the action taken is to

push the "next" p-graph item onto the process stack and advance

the pc two nodes; if v is an identifier, quote prevents it

from being interpreted with respect to the process prog-id;

similarly, if it is a prog-item, quote prevents it from being

interpreted. (3.5, 4.3)

251 Appendix 1

read-m-des (md):

produces a read-only memory designator from the memory

designator rod. (7.3)

read-p-des (pd) produces a read-only process designator from

the process designator pd. (7.3)

release (pd):

superceded by release-for (see Section 7.2); equivalent to

release-for (proc, pd). (3.6)

release-for (pdl, pd2):

releases the process pd2 which is currently seized by process

pdL (7. 2)

rem-rlist (pdl, pi):

removes the entry for prog-item pi from the rlist of the

process designated by pdL (7.2)

restore-dump (n):

sets the process status components to the values found in the

nth component of the process dump. (3.4)

rlist:

the value of the process rlist component. (7.2)

rlist-of (pd):

the value of the rlist component of the process designated by

pd. (7.2)

252 Appendix I

~ (n, vI, ••• , vn):

a constructor for rows; produces the designator for a row of

length n whose n components are vI, ••• , vn. (4.4)

EE.:

the value of the process reserve program (rp) component.

4.6}

(4.5,

rp-of (pd):

the value of the reserve program (rp) component of the process

designated by pd. (4.5, 4.6)

select (sd, id):

produces the "id" component of the struct designated by sd; if

the struct has no such component, select produces undef. (4.4)

selectors (sd):

produces the designator for a row whose components are the

selectors of the struct designated by sd. (4.4)

set-aflag (pd, tv):

sets the aflag component of the process designated by pd to tv.

(4.6)

set-control (pd, sd):

sets the control components of the process designated by pd to

the components of the struct designated by sd. (4.6)

set-dump (pd, n, sd):

sets the nth component of the dump of the process designated by

pd to sd. (4 • 6)

253 Appendix I

set-env (pd, sd):

sets the environment components of the process designated to

the components of the struct designated by sd. (4.6)

set-hp (pd, n, rd):

sets the n~ component of the handler programs (hp) component

of the process designated by pd to rd. (4.6)

set-level (pd, n):

sets the level component of the process designated by pd to n.

(4.6)

set-Ievel-inactive (n):

simultaneously sets the process aflag to false and the level to

n. (4.6)

set-pc (pd, n):

sets the pc component of the process designated by pd to n.

(4.6)

set-proc-id (pd, sd):

sets the proc-id component of the process designated by pd to

sd. (4.6)

setrprog (pd, rd):

sets the prog component of the process designated by pd to rd.

(4.6)

254 Appendix 1

set-prog-id (pd, sd):

sets the prog-id component of the process designated by pd to

sd. (4.6)

set-q (pd, n, qd):

sets the n~ queue of the queues (q) component of the process

designated by pd to qd. (4.6)

set-rp (pd, rd):

sets the reserve program (rp) component of the process

designated to rd. (4.6)

set-stack (pd, sd): sets the stack component of the process

designated by pd to sd.

(4.6)

set-status (pd, sd):

sets the status components of the process designated by pd to

the values of the components of the struct designated by sd.

(4.6)

~:

removes the top item from the process stack component. (4.5)

stack:

the value of the process stack. (4.5, 4.6)

stack-of (pd):

the value of the stack component of the process designated by

pd. (4.5, 4.6)

255 Appendix I

status:

produces the designator for a struct whose components are the

current values of the process prog, pc, aflag and level

components. (4.6)

status-of (pd):

produces the designator for a struct whose components are the

value of the prog, pc, level and aflag components of the

process designated by pd. (4.6)

store (cd, v):

sets the r-value of the cell designated by cd to v. (4.2)

struct (n, idl, vI, ••• , idn, vn):

a constructor for structs: produces the struct designator for

a struct having n components vI, ••• , vn selected by the

selectors idl, ••• , idn. (4.4)

terminate:

causes a process to cease to exist. (4.6)

times (nl, n2):

produces the product nl*n2. (4.3)

t-seize (pd):

superceded by t-seize-for (see Section 7.2): equivalent to

t-seize-for (proc, pd). (3.6)

t-seize-for (pdl, pd2):

a predicate with a side effect: an attempt is made to seize

256 Appendix I

the process designated by pd2: if it succeeds, the sflag of

pd2 is set to pdl and the predicate produces ~, otherwise it

produces false. (7.2)

t-set (cd):

predicate with a side effect: the r-value of the cell

designated by cd is examined: if the r-value is 0, it is set

to I and the predicate produces~: otherwise the predicate

produces false. (4.2)

unbind (id):

causes id to become unbound in the top id-Iayer of the process

prog-id. (4.5)

write-m-des (md):

produces a write-only memory designator from the memory

designator md. (7.3)

write-p-des (pd):

produces a write-only process designator from the process

designator pd. (7.3)

257

APPENDIX 2

The State Transition Rule

The state transition rule for the model is defined by

Figures 3.1, 3.3 and 7.2. Those figures are reproduced

together in this appendix.

no

yes

no

aflag on? <0

,- -'\, 258

start)

no
sflag on? (J)

Is there an integer j such that:

a . l~l~l evel ;
b. l~x~j implies ~(x) empty;
c. ~(j) not empty; and
d. !:!.E.(j) defined?

yes

Appendix 2

ves

.E..E£.& +- .£E.

.E...£ ~ "beginning"
of .£E. (j)

terminate
process

no yes
,- .E..£ defined?

~

set:

yes- no
.£E. de fined? ~ -

,

interpret
"instruction"
specified by
.l?..E.Q.& a n q .E..£

@

store:

.l?..E.Q.&

.E..£
level
aflag

in ~(j) <i>

se t:

.l?..E.Q.& ~ !:!.E. (j)

.E..£ +- "beginning"
of !:!.E.(j)

level ~ j
aflag + true

\
finish

,
J

/

The State Transition Rule.

259 Appendix 2

3

interpret
"instruction"
specified by
~ and ~ G>

no

top item in
stack = true?y

1 which situation of
...---------l Figure 3. 3b applies?

@

did interpretation
of the node include
setting .E...£? ~

interpret p-graph
node specified
by .E...£

set .E...£ to
node n 9

E3 E4
pop top ~'-L-_....... i t emf rom 1+--'--'

stack

El

~

E2
'-.

set .E...£ to
node t

set .E...£ to
node f

@>

E5

.J

situation 1

(a)

situation 2 situation 3

prog -~III'

pc

prog --W'

pc

pr0o-_~

pc

(b)

Part 9 of the state transition rule (see Figure 3.1)

260 Appendix 2

interpret p-graph
node specified
by .E.£

es

set sflag to

es

I---!y..:e..:.s__~ add .E...E..Q.£ t 0 j t h
queue of Q

'1.1.:5

is there an
entry for n
on rlist?

no

let (Q, j) be
the rlist entry

yes

let n be the p-graph
node specified by .E.£

no

1"10

interpret
1-------,

n
.1.

Part 9.1 of the state transition rule

261

References

[An65] J.P. Anderson, "Program Structures for Parallel

Processing", Corom. ACM Vol 8, No 12 (Dec 1965)

pp 786-788.

[BBN70] Bolt Beranek and Newman Inc, "TENEX Technical

Manual", Jan 1970.

[Be70] D. Beech, "A Structural View of PL/I", Computing

Surveys, Vol 2, No 1 (March 1970), pp 33-64.

[Bu68] W.H. Burge, "HcG - A Functional Programming

System", Report RC-2lll, IBM T.J. Watson

Research Center, Yorktown Heights, New York (1968).

[Che68] T. Cheatham, A. Fischer, P. Jorrand, "On the Basis

for ELF: An Extensible Language Facility", AFIPS

Proc Vol 33 (1968), Fall Joint Computer Conference.

[Chu5l] A. Church, "The Calculi of Lambda-Conversion", Annals

of Math. Studies, No 6, Princeton University Press,

Princeton, New Jersey (1951).

[CoJ163] M.E. Conway, "A T-1ultiprocessor System Design", AFIPS

Proc Vol 24 (1963), Fall Joint Computer Conference.

262

[Cor65] F.J. Corbato, V.A. Vyssotsky, "Introduction and Overview

of the Multics System", AFIPS £E.££ Vol 27 (1965),

Fall Joint Computer Conference.

[Da66] O.J. Dahl, K. Nygaard, "SIMULA - an ALGOL-Based

Simulation Language", Comm. ~, Vol 9, No 9

(Sept 1966) pp 671-678.

[deB69] J.W. deBakker, "Semantics of Programming Languages",

appears as Chapter 3 in Advances In Systems

Sciences edited by J. Tou, Plenum Press (1969).

[Di68a] E.N. Dijkstra, "Cooperating Sequential Processes",

appears in Programming Languages, edited by

F. Genuys, Academic Press, New York (1968);

also published as Report EWD 123, Department

of Mathematics; Technological University, Eindhoven,

The Netherlands (1965).

[Di68b] E.W. Dijkstra, "The Structure of THE Multiprogramming

System", Comm. ACM, Vol 11, No 5 U1ay 1968},

pp 341-346.

[Dng70] P.J. Denning, "Virtaul Memory", Computing Surveys,

Vol 2, Uo 3 (Sept 70), pp 153-190.

[Dns66] J.B. Dennis, E.C. Van Horn, "Programming Semantics for

Multiprogramming Computations", Comm. ACM, Vol 9

No 3 (Mar 1966), pp 143-155.

[Ev68]

[Pi70]

[F16 7]

263

A. Evans Jr., "PAL - A Language Designed for Teaching

Programming Linguistics", ~ 23rd ~ National

Conf, (1968), pp 395-403.

D.A. Fisher, "Control Structures for Programming

Languages", Ph.D. Thesis, Carnegie Mellon

University (1970).

R.W. Floyd, "Non Deterministic Algorithms",

Journal ~' Vol 14 (Oct 1967), pp 636-644.

[Gar68] J.V. Garwick, "GPL, A Truly General Purpose Language",

Comm. ~' Vol 11, No 9 (Sept 1968), pp 634-638.

[Ger70] S. Gerhart, "Formal Definition of APL", unpublished

paper, Computer Science Department, Carnegie Mellon

University, Harch 1970.

[Ha67] N.A. Haberman, "On the Harmonious Cooperation of

Abstract Hachines", Ph.D. Thesis, Technical

University, Eindhoven, The Netherlands, 1967.

[Ha69] N.A. Haberman, "Prevention of System Deadlocks",

Corom. ~' Vol 12, No 7 (July 1969), pp 373-378.

[IBM69] IB!'1 Corporation, "PL/I Language Specifications,

Form Y33-6003-1, 1969.

[Ir70] E.T. Irons, "Experiences with an Extensible Language",

Corom. ACM Vol 13, No 1 (Jan 1970), pp31-40.

[Ka68]

264

R.M. Karp, R.E. Miller, "Parallel Program Schemata",

Report No RC-2053, IBM T.J. Watson Research

Center, Yorktown Heights, New Center, York, 1968.

[Knu68] D.E. Knuth, The ~ of Computer Programming, Vol!,

Addison-Wesley, Reading, Massachusetts,

pp 406-420, 1968.

[Lam68] B.W. Lampson, "A Scheduling Philosophy for

Multiprocessing Systems", ~. ACM Vol 11,

No 5 (May 1968) pp 347-365.

[Lam69] B.W. Lampson, "Dynamic Protection Structures", AFIPS

Proc Vol 31 (1969), Fall Joint Computer Conference,

pp 27-38.

[Lan64] P.J. Landin, "The Mechanical Evaluation of Expressions",

Computer Journal, Vol 6 (1964), pp 308-320.

[Lan65] P.J. Landin, "A Correspondence Between ALGOL 60 and

Church's Lambda Notation", ~. ~, Vol 8,

Nos 2 & 3 (Feb, Mar 1965) pp 89-101, 150-165.

[Lan66] P.J. Landin, "The Next 700 Programming Languages",

Comm. ~, Vol 9, No 3 (Mar 1966), pp 157-164.

[Lau68] P. Lauer, "Abstract Syntax and Interpretation of

ALGOL 60 Programs", "Concrete Representation of

ALGOL 60 Programs", Reports LR 25.6.001 &

LR 25.6.002, IBM Vienna Laboratory, 1968.

265

[Lea69] B.M. Leavenworth, "The Definition of Control Structures

in McG360", Report RC 2376, IBM T.J. Watson

Research Center, Yorktown Heights, New York, 1969

[Lee69] J.A.N. Lee, "The Vienna Definition Language:

A Generalization of Instruction Definitions", paper

presented at the SIGPLAN Symposium on Programming

Language Definition, San Francisco, Calif. Aug 1969

[Lu68a] P. Lucas, P. Lauer, H. Stigleitner, " Tl1ethod and

Notation for the Formal Definition of

Programming Languages", Report TR 25.087,

IBM Laboratory, Vienna, 1968.

[Lu68b] P. Lucas, "Two Constructive Realizations of the Block

Concept and Their Equivalence", Report TR 25.085,

IBM Laboratory, Vienna, 1968.

[Lu71] P. Lucas, personal communication

[tuc68] F.L. Luconi, "Asynchronous Computational Sturctures",

Ph.D. Thesis, M.I.T., 1968, available as Project

MAC Report MAC-TR-49.

[Mc62] J. McCarthy et. al., ~ 1.5 Programmers Manual,

M.I.T. Press, 1962.

[Mc66] J. !'1cCarthy, "A Formal Description of a Subset

of ALGOL", appears in Formal Language Description

Languages, ed. T.B. Steele, North Holland

266

Pub. Co., Amsterdam, (1966).

[Mi70] J.G. Mitchell, "The Design and Construction of Flexible

and Efficient Interactive Progranuning Systems",

Ph.D. Theses, Carmegie-Mellon University, 1970.

[Na63] P. Naur (ed), "Revised Report on the Algorithmic

Language ALGOL 60", ~. ~, vol 6, No 1,

(Jan 1963), pp 1-17.

[Op65] A. Opler, "Procedure Oriented Language Statements to

Facilitate Parallel Processing", ~. ~, Vol 8,

No 5 (May 1965)

[Sa66] J.B. Saltzer, "Traffic Control in a Multiplexed

Computer System", Ph.D. Thesis, M.I.T., 1966,

available as Project HAC Report MAC-TR-30.

[Slu68] D.R. Slutz, "The Flow Graph Schemata Hodel of Parallel

Processing", Ph.D. Thesis, M.I.T., 1968, available

as Project HAC Report as Project MAC-TR-53.

[Sp69] M.J. Spier, E.I. Organick, "The MULTICS Interprocess

Communication Facility", presented at Second ACM

Symposium on Operating System Principles, Princeton,

New Jersey, Oct 20-22, 1969.

[Sta69] T.A. Standish, "Some Features of PPL, A Polymorphic

Programming Language", in Proc. of the SIGPLAN

Extensible Languages Symposium, in SIGPLAN Notices,

267

Vol 4, No 8 (Aug 1969), pp 20-26.

[Str67] C. Strachey, "Fundamental Concepts in Programming

Languages", text of lectures given at NATO Summer

School on Prog~amrning, 1967, to be published by

North Holland Pub. Co., Amsterdam.

[Ste66] T.B. Steele (ed), Formal Language Description tanguages,

Proc IFIP Working Conference 1964, North Holland

Pub. Co., Amsterdam, 1966.

[Van69] D.H. Vanderbilt, "Controlled Information Sharing in

a Computer Utility", Ph.D. Thesis, M.LT., 1969,

available as Project l~C Report MAC-TR-67.

[VH66] E.C. Van Horn, "Computer Design for Asynchronously

Reproducible Multiprocessing", Ph.D. Thesis, M.I.T.,

available as Project MAC Report MAC-TR-34.

[Weg70] B. Wegbreit, "Studies in Extensible Languages",

Ph.D. Thesis, Harvard University, 1970.

[Wi66]

[Wo70]

N. Wirth, letter on "Program Structures for Parallel

Processing", Comm. ~, Vol 9, No 5 (May 1966),

pp 320-321.

J.M. Wozencraft, A. Evans Jr., "Notes on Programming

Linguistics", available from M. LT. Department of

Electrical Engineering, Feb 1971

